Research Article
Machine Learning-Based Facial Beauty Prediction and Analysis of Frontal Facial Images Using Facial Landmarks and Traditional Image Descriptors
Table 12
Performance of each model according to MAE for 11–25 features.
| S. No. | Number of features | LR | KNN | RF | ANN |
| 1. | 11 | 0.3903 | 0.3876 | 0.3777 | 0.3727 | 2. | 12 | 0.4083 | 0.3957 | 0.3914 | 0.4034 | 3. | 13 | 0.3753 | 0.3558 | 0.4188 | 0.3964 | 4. | 14 | 0.3897 | 0.3504 | 0.4079 | 0.3876 | 5. | 15 | 0.3832 | 0.3546 | 0.3844 | 0.446 | 6. | 16 | 0.3543 | 0.3468 | 0.4193 | 0.4236 | 7. | 17 | 0.3521 | 0.3542 | 0.3913 | 0.3572 | 8. | 18 | 0.3561 | 0.3667 | 0.3858 | 0.4279 | 9. | 19 | 0.357 | 0.3749 | 0.4153 | 0.361 | 10. | 20 | 0.3589 | 0.3725 | 0.4188 | 0.3654 | 11. | 21 | 0.3621 | 0.3763 | 0.4103 | 0.3789 | 12. | 22 | 0.3652 | 0.3792 | 0.4069 | 0.3625 | 13. | 23 | 0.3624 | 0.3824 | 0.4037 | 0.3764 | 14. | 24 | 0.3527 | 0.3761 | 0.4152 | 0.371 | 15. | 25 | 0.361 | 0.3601 | 0.4092 | 0.3762 |
|
|