Research Article
Machine Learning-Based Facial Beauty Prediction and Analysis of Frontal Facial Images Using Facial Landmarks and Traditional Image Descriptors
Table 9
Performance of each model according to correlation for 11–25 features.
| S. No. | Number of features | LR | KNN | RF | ANN |
| 1. | 11 | 0.5492 | 0.625 | 0.6201 | 0.5527 | 2. | 12 | 0.4842 | 0.5603 | 0.5535 | 0.4972 | 3. | 13 | 0.5076 | 0.6694 | 0.3729 | 0.509 | 4. | 14 | 0.4859 | 0.7115 | 0.4211 | 0.486 | 5. | 15 | 0.5019 | 0.6587 | 0.542 | 0.1443 | 6. | 16 | 0.5792 | 0.6458 | 0.3761 | 0.3275 | 7. | 17 | 0.5952 | 0.6067 | 0.5158 | 0.5837 | 8. | 18 | 0.5921 | 0.5773 | 0.5424 | 0.3648 | 9. | 19 | 0.5811 | 0.5449 | 0.4248 | 0.5838 | 10. | 20 | 0.5954 | 0.5321 | 0.4156 | 0.5801 | 11. | 21 | 0.5806 | 0.5495 | 0.4187 | 0.5796 | 12. | 22 | 0.5854 | 0.5369 | 0.4258 | 0.58 | 13. | 23 | 0.5897 | 0.5485 | 0.4296 | 0.5732 | 14. | 24 | 0.5801 | 0.5331 | 0.4235 | 0.5721 | 15. | 25 | 0.58 | 0.541 | 0.4113 | 0.5821 |
|
|