Research Article

JRL-YOLO: A Novel Jump-Join Repetitious Learning Structure for Real-Time Dangerous Object Detection

Table 1

The YOLOv3-Tiny network structure.

LayerTypeFiltersSize/strideOutput

0Convolutional163 × 3/1416 × 416 × 16
1Maxpool2 × 2/2208 × 208 × 16
2Convolutional323 × 3/1208 × 208 × 32
3Maxpool2 × 2/2104 × 104 × 32
4Convolutional643 × 3/1104 × 104 × 64
5Maxpool2 × 2/252 × 52 × 64
6Convolutional1283 × 3/152 × 52 × 128
7Maxpool2 × 2/226 × 26 × 128
8Convolutional2563 × 3/126 × 26 × 256
9Maxpool2 × 2/213 × 13 × 256
10Convolutional5123 × 3/113 × 13 × 512
11Maxpool2 × 2/113 × 13 × 512
12Convolutional10243 × 3/113 × 13 × 1024
13Convolutional2561 × 1/113 × 13 × 256
14Convolutional5123 × 3/113 × 13 × 512
15Convolutional361 × 1/113 × 13 × 36
16YOLO
17Route 13
18Convolutional1281 × 1/113 × 13 × 128
19Upsample2 × 2/126 × 26 × 128
20Route 19, 8
21Convolutional2563 × 3/126 × 26 × 256
22Convolutional361 × 1/126 × 26 × 256
23YOLO