Research Article
JRL-YOLO: A Novel Jump-Join Repetitious Learning Structure for Real-Time Dangerous Object Detection
Table 1
The YOLOv3-Tiny network structure.
| Layer | Type | Filters | Size/stride | Output |
| 0 | Convolutional | 16 | 3 × 3/1 | 416 × 416 × 16 | 1 | Maxpool | — | 2 × 2/2 | 208 × 208 × 16 | 2 | Convolutional | 32 | 3 × 3/1 | 208 × 208 × 32 | 3 | Maxpool | — | 2 × 2/2 | 104 × 104 × 32 | 4 | Convolutional | 64 | 3 × 3/1 | 104 × 104 × 64 | 5 | Maxpool | — | 2 × 2/2 | 52 × 52 × 64 | 6 | Convolutional | 128 | 3 × 3/1 | 52 × 52 × 128 | 7 | Maxpool | — | 2 × 2/2 | 26 × 26 × 128 | 8 | Convolutional | 256 | 3 × 3/1 | 26 × 26 × 256 | 9 | Maxpool | — | 2 × 2/2 | 13 × 13 × 256 | 10 | Convolutional | 512 | 3 × 3/1 | 13 × 13 × 512 | 11 | Maxpool | — | 2 × 2/1 | 13 × 13 × 512 | 12 | Convolutional | 1024 | 3 × 3/1 | 13 × 13 × 1024 | 13 | Convolutional | 256 | 1 × 1/1 | 13 × 13 × 256 | 14 | Convolutional | 512 | 3 × 3/1 | 13 × 13 × 512 | 15 | Convolutional | 36 | 1 × 1/1 | 13 × 13 × 36 | 16 | YOLO | — | — | — | 17 | Route 13 | — | — | — | 18 | Convolutional | 128 | 1 × 1/1 | 13 × 13 × 128 | 19 | Upsample | — | 2 × 2/1 | 26 × 26 × 128 | 20 | Route 19, 8 | — | — | — | 21 | Convolutional | 256 | 3 × 3/1 | 26 × 26 × 256 | 22 | Convolutional | 36 | 1 × 1/1 | 26 × 26 × 256 | 23 | YOLO | — | — | — |
|
|