Research Article

JRL-YOLO: A Novel Jump-Join Repetitious Learning Structure for Real-Time Dangerous Object Detection

Table 3

Comparison of using three different lightweight models on the dangerous target dataset.

PrecisionClassesYOLOv2-TinyYOLOv3-TinyJRL-YOLO

AP (%)Gun75.5885.9289.26
Knife38.7671.6680.50
Hit70.7181.6481.77
Kick91.6888.3694.85
Fall85.0187.2088.08
Stick74.0381.5888.18
Short knife75.1477.6681.25

MAP (%)—73.2981.8185.03