Research Article

JRL-YOLO: A Novel Jump-Join Repetitious Learning Structure for Real-Time Dangerous Object Detection

Table 4

Comparison of MAP results tested on the VOC2007 dataset.

PrecisionClassesYOLOv2-TinyYOLOv3-TinyYOLOv4-TinyJRL-YOLO

AP (%)Aeroplane39.8346.4754.0659.63
Bicycle53.1054.2462.1359.90
Bird13.5518.8329.5533.03
Boat15.8318.3126.7331.49
Bottle3.828.7916.4018.56
Bus45.5246.4557.0662.29
Car52.5360.6272.8171.21
Cat35.1035.7750.1253.93
Chair16.5121.1231.1128.66

MAP (%)Cow29.1631.6247.7642.56
Dining table27.3728.4235.4744.62
Dog28.5330.1141.0046.74
Horse55.4057.8465.5767.99
Motorbike52.1854.3765.3065.52
Person39.4748.7963.7364.41
Potted plant6.8410.8718.7721.31
Sheep31.3640.8546.7042.97
Sofa21.1525.7236.5444.79
Train46.7551.5659.3268.24
TV monitor36.4542.2148.0646.91
—35.4339.5946.5048.88

The best result is shown in bold.