Research Article
A Search Method for Optimal Band Combination of Hyperspectral Imagery Based on Two Layers Selection Strategy
Table 5
Kappa coefficients of algorithms under different conditions.
| Algorithm | Data set | Kappa coefficient | Indian pines | PaviaU | Salinas |
| | SVM | KNN | SVM | KNN | SVM | KNN | MVPCA | m = 12 | 0.723 | 0.708 | 0.782 | 0.796 | 0.77 | 0.762 | m = 18 | 0.771 | 0.756 | 0.846 | 0.853 | 0.853 | 0.867 | m = 24 | 0.806 | 0.782 | 0.873 | 0.872 | 0.893 | 0.901 |
| WaLuDi | m = 12 | 0.714 | 0.702 | 0.824 | 0.829 | 0.816 | 0.814 | m = 18 | 0.787 | 0.771 | 0.881 | 0.867 | 0.875 | 0.86 | m = 24 | 0.821 | 0.804 | 0.918 | 0.89 | 0.91 | 0.893 |
| DBSCAN | m = 12 | 0.726 | 0.71 | 0.797 | 0.784 | 0.813 | 0.806 | m = 18 | 0.783 | 0.773 | 0.872 | 0.861 | 0.878 | 0.88 | m = 24 | 0.822 | 0.818 | 0.905 | 0.903 | 0.911 | 0.917 |
| FDPC | m = 12 | 0.72 | 0.732 | 0.804 | 0.796 | 0.822 | 0.808 | m = 18 | 0.782 | 0.797 | 0.852 | 0.865 | 0.885 | 0.86 | m = 24 | 0.817 | 0.83 | 0.897 | 0.902 | 0.907 | 0.902 |
| LP | m = 12 | 0.716 | 0.704 | 0.803 | 0.78 | 0.797 | 0.804 | m = 18 | 0.768 | 0.76 | 0.854 | 0.841 | 0.853 | 0.86 | m = 24 | 0.811 | 0.797 | 0.87 | 0.882 | 0.88 | 0.894 |
| ISSC | m = 12 | 0.736 | 0.715 | 0.845 | 0.84 | 0.833 | 0.838 | m = 18 | 0.792 | 0.773 | 0.893 | 0.903 | 0.887 | 0.891 | m = 24 | 0.83 | 0.81 | 0.921 | 0.926 | 0.92 | 0.923 |
| TLS | m = 12 | 0.738 | 0.751 | 0.853 | 0.834 | 0.846 | 0.848 | m = 18 | 0.803 | 0.822 | 0.905 | 0.897 | 0.89 | 0.904 | m = 24 | 0.842 | 0.853 | 0.927 | 0.924 | 0.918 | 0.93 |
|
|