Research Article
Automatic Detection of Obstructive Sleep Apnea Events Using a Deep CNN-LSTM Model
Table 3
The parameters of the proposed model.
| Layer | Layer type | Units | Unit type | Size | Stride | Output size |
| Input | | | | | | 1000 × 1 | BN | | | | | | 1000 × 1 | Cn_1 | Convolutional | 24 | ReLU | 125 × 1 | 1 × 1 | 876 × 24 | Cn_2 | Convolutional | 24 | ReLU | 15 × 1 | 1 × 1 | 986 × 24 | Cn_3 | Convolutional | 24 | ReLU | 5 × 1 | 1 × 1 | 996 × 24 | Mp_1 | Max pooling | 24 | | 2 × 1 | 1 × 1 | 438 × 24 | Mp_2 | Max pooling | 24 | | 2 × 1 | 1 × 1 | 493 × 24 | Mp_3 | Max pooling | 24 | | 2 × 1 | 1 × 1 | 498 × 24 | Concatenate | | 24 | | | | 1429 × 24 | Mp_4 | Max pooling | 24 | | 3 × 1 | 1 × 1 | 476 × 24 | Add | Add | 24 | | | | 1000 × 24 | Dense | Fully connected | 48 | LeakyReLU | | | 1000 × 48 | Dropout | Dropout | | | | | 1000 × 48 | Gp | Global pooling | | | | | 48 × 1 | LSTM | LSTM | | | | | 64 × 1 | Dense | Fully connected | 2 | Softmax | | | 2 |
|
|