Research Article

Automatic Detection of Obstructive Sleep Apnea Events Using a Deep CNN-LSTM Model

Table 3

The parameters of the proposed model.

LayerLayer typeUnitsUnit typeSizeStrideOutput size

Input1000 × 1
BN1000 × 1
Cn_1Convolutional24ReLU125 × 11 × 1876 × 24
Cn_2Convolutional24ReLU15 × 11 × 1986 × 24
Cn_3Convolutional24ReLU5 × 11 × 1996 × 24
Mp_1Max pooling242 × 11 × 1438 × 24
Mp_2Max pooling242 × 11 × 1493 × 24
Mp_3Max pooling242 × 11 × 1498 × 24
Concatenate241429 × 24
Mp_4Max pooling243 × 11 × 1476 × 24
AddAdd241000 × 24
DenseFully connected48LeakyReLU1000 × 48
DropoutDropout1000 × 48
GpGlobal pooling48 × 1
LSTMLSTM64 × 1
DenseFully connected2Softmax2