Research Article

Unbiased Model-Agnostic Metalearning Algorithm for Learning Target-Driven Visual Navigation Policy

Table 1

Comparison results of standard deviation for SPL and SR in the same scene type.

ScenarioMethodScene instanceSD
bedroom01bedroom02bedroom03bedroom04
SPLSRSPLSRSPLSRSPLSRSPLSR

Trained target in unseen environmentTDVG8.5613.70.814.110.563.899.4115.74.816.23
MPSL6.8710.811.419.92.518.443.4111.24.035.02
GCN7.1912.116.425.215.922.917.231.64.688.11
Ours(loc)13.442.319.838.619.441.111.729.44.135.84
Ours(GC-loc)11.533.617.730.215.129.718.938.63.274.10
Ours(VL-loc)15.140.115.036.214.936.519.840.22.402.19
Ours(UM-loc)14.440.217.938.419.636.818.334.52.222.42