Research Article

Unbiased Model-Agnostic Metalearning Algorithm for Learning Target-Driven Visual Navigation Policy

Table 2

Comparison results of standard deviation for SPL and SR in the different scene types.

ScenarioMethodScene instanceSD
bedroomkitchenlivingroombathroom
SPLSRSPLSRSPLSRSPLSRSPLSR

Trained target in unseen environmentTDVG1.429.149.8117.715.630.85.4513.96.079.29
MPSL4.2612.310.622.82.479.3410.525.84.217.97
GCN11.425.815.132.55.4312.114.328.94.388.91
Our(glo)9.2520.517.436.88.5618.412.131.34.018.76
Our(GC-glo)8.3415.411.428.612.120.417.736.63.909.32
Our(VL-glo)7.224.714.531.49.8119.114.827.23.705.14
Our(UM-glo)10.133.615.535.713.526.817.234.73.053.85