Research Article
[Retracted] Application of Deep Reinforcement Learning Algorithm in Uncertain Logistics Transportation Scheduling
Table 1
The performance of different strategies in uncertain logistics systems.
| Strategy | Request served | Distance (km) | Computation |
| Optimal | 200.00 | 3742.29 | 6.00 h | DRL-greedy | 196.17 | 5855.68 | 0.51 s | DRL-sample@128 | 200.00 | 4612.84 | 3.96 s | DRL-sample@1k | 200.00 | 4183.75 | 38.12 s | DRL-sample@13k | 200.00 | 3966.61 | 379.44 s | DRL-sample@1 min | 200.00 | 4139.84 | 60.00 s | MIP@ 1 min | 200.00 | 10536.06 | 60.00 s | M-MOEA/D@ 1 min | 198.03 | 4385.92 | 60.00 s | MIP@ 10 min | 200.00 | 6150.25 | 600.00 s | M-MOEA/D@10 min | 199.56 | 4004.19 | 600.00 s | MIP@60 min | 200.00 | 3878.55 | 1.00 h | M-MOEA/D@60 min | 200.00 | 3936.62 | 1.00 h |
|
|