Research Article

[Retracted] Application of Deep Reinforcement Learning Algorithm in Uncertain Logistics Transportation Scheduling

Table 1

The performance of different strategies in uncertain logistics systems.

StrategyRequest servedDistance (km)Computation

Optimal200.003742.296.00 h
DRL-greedy196.175855.680.51 s
DRL-sample@128200.004612.843.96 s
DRL-sample@1k200.004183.7538.12 s
DRL-sample@13k200.003966.61379.44 s
DRL-sample@1 min200.004139.8460.00 s
MIP@ 1 min200.0010536.0660.00 s
M-MOEA/D@ 1 min198.034385.9260.00 s
MIP@ 10 min200.006150.25600.00 s
M-MOEA/D@10 min199.564004.19600.00 s
MIP@60 min200.003878.551.00 h
M-MOEA/D@60 min200.003936.621.00 h