Research Article

3D M-Net: Object-Specific 3D Segmentation Network Based on a Single Projection

Table 1

Parametric structure of the essential components.

LayerParametersOutput size

ResConv block (k)3 × 3 × k Conv + BN + ReLU2562 × k
3 × 3 × k Conv + BN
1 × 1 × k Conv
ReLU

DownSample block (n)ResConv block (512)n2 × 512
ResConv block (512)
2 × 2 max-pooling

UpSample block (n)3 × 3 Deconv with 2 × 2 striden2 × 512
ResConv block (512)
ResConv block (512)

Skip connect (n)Concatenate + 1 × 1 × 512 Convn2 × 512

Transformation module1 × 1 × 512 Conv + ReLU2563 × 2
Reshape
1 × 1 × 1 × 2 Conv

3D Conv block (k)3 × 3 × 3 × k Conv + BN + ReLU2563 × k

k denotes the number of filters in the convolution layers, and n denotes the output resolution of the downsampling or upsampling block.