Computational Intelligence and Neuroscience / 2021 / Article / Tab 4 / Research Article
EEG-Based Personality Prediction Using Fast Fourier Transform and DeepLSTM Model Table 4 Classification accuracy comparison for personality prediction of DeepLSTM model with other state-of-the-art algorithms on the ASCERTAIN and the proposed EEG dataset.
Dataset Method Validation technique Accuracy Max Avg Min ASCERTAIN ANN 50–50 70.84 67.24 64.48 KNN 50–50 67.64 64.26 62.23 LIBSVM 50–50 77.28 73.84 71.86 HGP 50–50 78.52 75.38 72.68 DeepLSTM classifier 50–50 82.48 80.36 77.42 ASCERTAIN ANN 60–40 74.34 69.86 67.74 KNN 60–40 70.38 68.16 65.68 LIBSVM 60–40 79.86 77.28 75.46 HGP 60–40 81.27 78.73 76.08 DeepLSTM classifier 60–40 88.14 85.63 81.46 ASCERTAIN ANN 70–30 75.18 73.16 69.94 KNN 70–30 72.82 70.84 68.62 LIBSVM 70–30 83.26 81.62 79.86 HGP 70–30 86.64 83.38 80.74 DeepLSTM classifier 70–30 92.86 89.68 86.46 ASCERTAIN ANN 10-fold 78.82 74.64 72.46 KNN 10-fold 74.36 72.37 70.25 LIBSVM 10-fold 84.82 82.42 80.28 HGP 10-fold 86.12 83.86 81.84 DeepLSTM classifier 10-fold 95.32 94.16 91.98 Proposed dataset ANN 50–50 72.84 69.36 66.48 KNN 50–50 69.32 66.92 63.86 LIBSVM 50–50 79.74 76.64 73.86 HGP 50–50 80.36 77.83 74.89 DeepLSTM classifier 50–50 84.56 82.44 79.62 Proposed dataset ANN 60–40 76.16 73.28 70.12 KNN 60–40 72.64 70.62 68.54 LIBSVM 60–40 81.26 79.58 77.82 HGP 60–40 83.28 80.94 78.63 DeepLSTM classifier 60–40 91.52 87.62 84.86 proposed dataset ANN 70–30 78.62 73.94 71.28 KNN 70–30 74.68 72.36 70.82 LIBSVM 70–30 85.64 83.70 81.58 HGP 70–30 87.69 84.74 82.84 DeepLSTM classifier 70–30 94.82 91.68 88.72 Proposed dataset ANN 10-fold 80.24 76.54 74.98 KNN 10-fold 76.82 74.64 72.28 LIBSVM 10-fold 88.04 85.16 83.26 HGP 10-fold 90.32 86.93 84.78 DeepLSTM classifier 10-fold 96.94 95.88 93.94
Optimal values are represented in bold.