Research Article

EEG-Based Personality Prediction Using Fast Fourier Transform and DeepLSTM Model

Table 4

Classification accuracy comparison for personality prediction of DeepLSTM model with other state-of-the-art algorithms on the ASCERTAIN and the proposed EEG dataset.

DatasetMethodValidation techniqueAccuracy
MaxAvgMin

ASCERTAINANN50–5070.8467.2464.48
KNN50–5067.6464.2662.23
LIBSVM50–5077.2873.8471.86
HGP50–5078.5275.3872.68
DeepLSTM classifier50–5082.4880.3677.42

ASCERTAINANN60–4074.3469.8667.74
KNN60–4070.3868.1665.68
LIBSVM60–4079.8677.2875.46
HGP60–4081.2778.7376.08
DeepLSTM classifier60–4088.1485.6381.46

ASCERTAINANN70–3075.1873.1669.94
KNN70–3072.8270.8468.62
LIBSVM70–3083.2681.6279.86
HGP70–3086.6483.3880.74
DeepLSTM classifier70–3092.8689.6886.46

ASCERTAINANN10-fold78.8274.6472.46
KNN10-fold74.3672.3770.25
LIBSVM10-fold84.8282.4280.28
HGP10-fold86.1283.8681.84
DeepLSTM classifier10-fold95.3294.1691.98

Proposed datasetANN50–5072.8469.3666.48
KNN50–5069.3266.9263.86
LIBSVM50–5079.7476.6473.86
HGP50–5080.3677.8374.89
DeepLSTM classifier50–5084.5682.4479.62

Proposed datasetANN60–4076.1673.2870.12
KNN60–4072.6470.6268.54
LIBSVM60–4081.2679.5877.82
HGP60–4083.2880.9478.63
DeepLSTM classifier60–4091.5287.6284.86

proposed datasetANN70–3078.6273.9471.28
KNN70–3074.6872.3670.82
LIBSVM70–3085.6483.7081.58
HGP70–3087.6984.7482.84
DeepLSTM classifier70–3094.8291.6888.72

Proposed datasetANN10-fold80.2476.5474.98
KNN10-fold76.8274.6472.28
LIBSVM10-fold88.0485.1683.26
HGP10-fold90.3286.9384.78
DeepLSTM classifier10-fold96.9495.8893.94

Optimal values are represented in bold.