Research Article
A Fault Prediction and Cause Identification Approach in Complex Industrial Processes Based on Deep Learning
Table 3
F1-score from the testing dataset using the approach proposed in this paper.
| States | Type | Maximum of F1-score | Minimum of F1-score | Average |
| Fault1 | Step | 0.91 | 0.78 | 0.84 | Fault2 | Step | 0.85 | 0.71 | 0.78 | Fault3 | Step | 0.67 | 0.53 | 0.6 | Fault4 | Step | 0.98 | 0.95 | 0.97 | Fault5 | Step | 0.77 | 0.62 | 0.71 | Fault6 | Step | 0.99 | 0.95 | 0.97 | Fault7 | Step | 0.99 | 0.96 | 0.98 | Fault8 | Random | 0.89 | 0.78 | 0.83 | Fault9 | Random | 0.7 | 0.51 | 0.6 | Fault10 | Random | 0.98 | 0.92 | 0.96 | Fault11 | Random | 0.991 | 0.975 | 0.982 | Fault12 | Random | 0.86 | 0.78 | 0.8 | Fault13 | Slow drift | 0.97 | 0.86 | 0.89 | Fault14 | Sticking | 0.98 | 0.89 | 0.92 | Fault15 | Sticking | 0.21 | 0.18 | 0.19 | Fault16 | Unknown | 0.23 | 0.15 | 0.17 | Fault17 | Unknown | 0.99 | 0.94 | 0.97 | Fault18 | Unknown | 0.88 | 0.81 | 0.85 | Fault19 | Unknown | 0.98 | 0.95 | 0.97 | Fault20 | Unknown | 0.85 | 0.76 | 0.81 |
|
|