Computational Intelligence and Neuroscience / 2021 / Article / Tab 6 / Research Article
A Novel Pyramid Network with Feature Fusion and Disentanglement for Object Detection Table 6 Comparison of the test results of FFAD with other state-of-the-art object detectors. Results are evaluated on COCO test-dev. ∼ indicates multiscale testing is used.
Method Backbone AP AP50 AP75 APS APM APL Two-stage detectors Faster RCNN w/FPN [19 ] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2 Deformable R–FCN [40 ] Inc-Res-v2 37.5 58.0 40.8 19.4 40.1 52.5 Mask-RCNN [21 ] ResNext-101 39.8 62.3 43.4 22.1 43.2 51.2 Soft-NMS [41 ] ResNet-101 40.8 62.4 44.9 23.0 43.4 53.2 SOD-MTGAN [42 ] ResNet-101 41.4 63.2 45.4 24.7 44.2 52.6 Cascade-RCNN [43 ] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2 TridentDet [44 ] ResNet-101 42.7 63.6 46.5 23.9 46.6 56.6 TSD [11 ] ResNet-101 43.2 64.0 46.9 24.0 46.3 55.8 SNIP∼ [1 ] DCN + ResNet-101 44.4 66.2 49.2 27.3 46.4 56.9 SNIPER∼ [29 ] DCN + ResNet-101 46.1 67.6 51.5 28.0 51.2 60.5 One-stage detectors DSSD513 [45 ] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1 RefineDet512 [46 ] ResNet-101 36.4 57.5 39.5 13.6 39.9 51.4 RetinaNet800 [25 ] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2 PPDet [47 ] ResNet-101 40.7 60.2 44.5 24.5 44.4 49.7 AutoFPN [48 ] ResNet-101 42.5 - - - - - FreeAnchor [49 ] ResNet-101 43.0 62.2 46.4 24.7 46.0 54.0 M2Det ∼ [7 ] ResNet-101 43.9 64.4 48.0 29.6 49.6 54.3 FoveaBox [50 ] ResNext-101 42.1 61.9 45.2 24.9 46.8 55.6 FCOS [26 ] ResNext-101 44.7 64.1 48.4 27.6 47.5 55.6 CornerNet [51 ] Hourglass-104 40.6 56.4 43.2 19.1 42.8 54.3 ExtremeNet [52 ] Hourglass-104 40.1 55.3 43.2 20.3 43.2 53.1 CenterNet [53 ] Hourglass-104 44.9 62.4 48.1 25.6 47.4 57.4 CenterNet ∼ [53 ] Hourglass-104 47.0 64.5 50.7 28.9 49.9 58.9 RepPoints [54 ] DCN + ResNet-101 45.0 66.1 49.0 26.6 48.6 57.5 Ours FFAD ResNet-101 44.1 62.2 47.9 27.4 47.6 56.7 FFAD DCN + ResNet-101 46.5 64.9 51.2 29.3 51.3 60.8 FFAD DCN + ResNext-101 47.4 66.9 52.0 31.1 51.5 61.9 FFAD ∼ DCN + ResNext-101 49.5 68.9 53.9 35.8 53.6 63.3