Research Article

A Novel Pyramid Network with Feature Fusion and Disentanglement for Object Detection

Table 6

Comparison of the test results of FFAD with other state-of-the-art object detectors. Results are evaluated on COCO test-dev.  ∼ indicates multiscale testing is used.

MethodBackboneAPAP50AP75APSAPMAPL

Two-stage detectors
Faster RCNN w/FPN [19]ResNet-10136.259.139.018.239.048.2
Deformable R–FCN [40]Inc-Res-v237.558.040.819.440.152.5
Mask-RCNN [21]ResNext-10139.862.343.422.143.251.2
Soft-NMS [41]ResNet-10140.862.444.923.043.453.2
SOD-MTGAN [42]ResNet-10141.463.245.424.744.252.6
Cascade-RCNN [43]ResNet-10142.862.146.323.745.555.2
TridentDet [44]ResNet-10142.763.646.523.946.656.6
TSD [11]ResNet-10143.264.046.924.046.355.8
SNIP [1]DCN + ResNet-10144.466.249.227.346.456.9
SNIPER [29]DCN + ResNet-10146.167.651.528.051.260.5

One-stage detectors
DSSD513 [45]ResNet-10133.253.335.213.035.451.1
RefineDet512 [46]ResNet-10136.457.539.513.639.951.4
RetinaNet800 [25]ResNet-10139.159.142.321.842.750.2
PPDet [47]ResNet-10140.760.244.524.544.449.7
AutoFPN [48]ResNet-10142.5-----
FreeAnchor [49]ResNet-10143.062.246.424.746.054.0
M2Det [7]ResNet-10143.964.448.029.649.654.3
FoveaBox [50]ResNext-10142.161.945.224.946.855.6
FCOS [26]ResNext-10144.764.148.427.647.555.6
CornerNet [51]Hourglass-10440.656.443.219.142.854.3
ExtremeNet [52]Hourglass-10440.155.343.220.343.253.1
CenterNet [53]Hourglass-10444.962.448.125.647.457.4
CenterNet [53]Hourglass-10447.064.550.728.949.958.9
RepPoints [54]DCN + ResNet-10145.066.149.026.648.657.5

Ours
FFADResNet-10144.162.247.927.447.656.7
FFADDCN + ResNet-10146.564.951.229.351.360.8
FFADDCN + ResNext-10147.466.952.031.151.561.9
FFAD DCN + ResNext-10149.568.953.935.853.663.3