Research Article

Application of Various Machine Learning Techniques in Predicting Total Organic Carbon from Well Logs

Table 2

Summary of different research studies that employed AI techniques to predict the TOC.

RefData sourcesData pointsAI toolsInputsAccuracy (R2)

[8]Barnett and Devonian shale442ANNRHOB, GR, Δt, FR0.89–0.93
[9]Shahejie formation125CNNCNP, RHOB, GR, Δt, FR0.83
[14]Kazhdumi formation31FLCNP, RHOB, GR, Δt, FR, K, Th, Ur0.94
[17]Devonian and Barnett shales+500FNN, SVMRHOB, GR, Δt, FR0.74–0.77
[18]Barnett shale645FLRHOB, GR, Δt, FR0.91
[25]Jiumenchong formation31SVMCNP, RHOB, GR, Δt, FR, K, Th, Ur0.69
[27]Kangan-Dalan formation124FL, NF, NNCNP, RHOB, GR, Δt, FR0.85
[28]Kazhdomi and Kangan-Dalan formations78ANNGR, Δt, FR, K, Th0.89
[29]Ordos basin and Canning basinNAGPRCNP, RHOB, GR, Δt, FR, K, Th, UrNA
[30]Gadvan formation2875ANN, FLCNP, RHOB, Δt, FR0.78–0.99
[31]Kazhdomi and Kangan-Dalan formations200ANNCNP, GR, Δt, FR, K, ThNA
[32]NA70ANNΔt, FR0.98
[33]Khatatba and Ras Qattara formations54ANNCNP, RHOB, GR, Δt, FR0.96
[34]Beibu Gulf basin18SVMRHOB, GR, Δt, SP, FR0.75
[35]Sichuan basin185ELM, ANNCNP, RHOB, GR, Δt, FR, K, Th, Ur0.87–0.91
[36]Tonghua basin215ANN, SVMCNP, RHOB, GR, Δt, SP, FR, K, Th, Ur0.9–0.93
[37]Barnett and Duvernay shales460ANNRHOB, GR, Δt, FR0.98
[38]Barnett shale442ANNRHOB, GR, Δt, FR0.93
[39]Barnett shale+800ANFIS, FNN, SVMRHOB, GR, Δt, FR0.82–0.87
[40]Qaidam basin19ANNRHOB, GR, Δt, FRNA
[41]Bohai Bay, Sichuan, Ordos and western Canada sedimentary basins353ANN, SVMRHOB, GR, Δt, FR0.89