Research Article
Application of Various Machine Learning Techniques in Predicting Total Organic Carbon from Well Logs
Table 3
The statistical description of the training data.
| Statistical parameter | FR (Ω·m) | Δt (μsec/ft) | RHOB (g/cm3) | CNP | GR (°API) | Ur (wt%) | Th (ppm) | K (ppm) | TOC (wt%) |
| Minimum | 3.71 | 51.0 | 2.39 | 0.019 | 22.9 | 1.39 | 1.97 | 0.130 | 0.76 | Maximum | 1675 | 96.6 | 2.77 | 0.346 | 298 | 22.6 | 17.0 | 4.06 | 5.66 | Mean | 110 | 77.9 | 2.545 | 0.174 | 95.5 | 6.16 | 9.01 | 1.51 | 2.78 | Standard deviation | 176 | 8.56 | 0.075 | 0.052 | 38.9 | 3.16 | 2.517 | 0.607 | 1.30 | Kurtosis | 21.8 | 0.227 | −0.465 | 0.984 | 3.43 | 6.81 | 0.315 | 1.14 | −1.08 | Skewness | 3.98 | −0.630 | 0.436 | −0.127 | 0.837 | 2.13 | −0.135 | 0.554 | 0.181 |
|
|