Research Article

Aircraft Detection for Remote Sensing Image Based on Bidirectional and Dense Feature Fusion

Table 3

The contrastive results in the NWPU-DataSet.

AP (%)Method
EB-V-F-BR [45]AD-FCN [46]CPISNet [47]RICNN [44]FRCN [12]R-P-F RCN [48]NEOON [49]DConvNet [37]DNN [50]BDFFDN (ours)

Airplane47.8569.3843.1088.3582.8090.4078.2987.3092.4099.02
Ship35.4161.8258.2077.3477.5075.0081.6881.4079.3078.89
Storage tank63.5269.6674.6085.2752.5044.4094.6263.6087.1090.67
Baseball diamond42.9162.5886.2088.1296.3089.9089.7490.4093.2090.68
Tennis court52.4761.2374.5040.8362.9079.7061.2581.6081.0090.91
Basketball court55.5773.2183.6058.4568.8077.6065.0474.1089.3081.50
Ground track field47.4775.2892.5086.7398.4087.7093.2390.3075.80100.00
Harbor39.8557.8366.6068.6082.5079.1073.1575.3072.5090.70
Bridge36.8353.7735.7061.5178.8068.2059.4671.4072.8086.23
Vehicle37.2656.3859.7071.1063.8073.2078.2675.5083.0081.30
mAP45.9164.1167.5072.6376.4076.5077.5079.1082.6088.99