Research Article

[Retracted] CNN-LSTM Hybrid Model for Kinematic Feature Analysis and Parabolic Radian Prediction in Basketball Videos

Algorithm 1

RAdam-based optimization algorithm.
Input: Define learning rate , initial parameters , numerical stability , gradient first-order decay coefficient , gradient second-order decay coefficient , and optimization objective function .
Output: final parameters.
Initialize simple moving average (SMA)
While do
 Calculate the gradient at step t
 Calculate the second-order moment of the shift
 Calculate the correction for shift deviation
 Calculate the maximum value of SMA
 if then
  Calculate the correction value of the second-order moment of the moving volume ;
  Update of parameters using adaptive momentum
 Else
  Update of parameters using nonadaptive momentum
Return