Research Article
[Retracted] CNN-LSTM Hybrid Model for Kinematic Feature Analysis and Parabolic Radian Prediction in Basketball Videos
Algorithm 1
RAdam-based optimization algorithm.
| | Input: Define learning rate , initial parameters , numerical stability , gradient first-order decay coefficient , gradient second-order decay coefficient , and optimization objective function . | | | Output: final parameters. | | | Initialize simple moving average (SMA) | | | While do | | | Calculate the gradient at step t | | | Calculate the second-order moment of the shift | | | Calculate the correction for shift deviation | | | Calculate the maximum value of SMA | | | if then | | | Calculate the correction value of the second-order moment of the moving volume ; | | | Update of parameters using adaptive momentum | | | Else | | | Update of parameters using nonadaptive momentum | | | Return |
|