Research Article

Modelling the Latent Semantics of Diffusion Sources in Information Cascade Prediction

Table 2

Evaluation results on Twitter and Weibo datasets.

Method/gainTwitterWeibo
MRRHit@10Hit@50Hit@100MRRHit@10Hit@50Hit@100

RNN21.3723.8225.9327.191.762.828.0913.17
RNN + DSSF23.0326.7731.8133.551.893.008.7314.05
Gain8.0412.3822.6823.397.386.387.916.68
LSTM21.8226.1728.4529.411.382.748.8914.59
LSTM + DSSF23.5128.5933.2535.111.673.159.7315.75
Gain7.759.2516.8719.3821.0114.969.457.95
DeepDiffuse18.3425.9328.6329.891.613.069.7815.84
DeepDiffuse + DSSF18.9226.9732.4134.451.893.3710.2117.27
Gain3.164.0113.2015.2517.3910.134.399.02
HiDAN22.3425.8728.5129.411.903.5410.0315.86
HiDAN + DSSF23.1127.6732.1134.842.113.8311.3117.12
Gain3.466.9512.6218.4611.058.1912.767.94