Research Article
Modelling the Latent Semantics of Diffusion Sources in Information Cascade Prediction
Table 2
Evaluation results on Twitter and Weibo datasets.
| Method/gain | Twitter | Weibo | MRR | Hit@10 | Hit@50 | Hit@100 | MRR | Hit@10 | Hit@50 | Hit@100 |
| RNN | 21.37 | 23.82 | 25.93 | 27.19 | 1.76 | 2.82 | 8.09 | 13.17 | RNN + DSSF | 23.03 | 26.77 | 31.81 | 33.55 | 1.89 | 3.00 | 8.73 | 14.05 | Gain | 8.04 | 12.38 | 22.68 | 23.39 | 7.38 | 6.38 | 7.91 | 6.68 | LSTM | 21.82 | 26.17 | 28.45 | 29.41 | 1.38 | 2.74 | 8.89 | 14.59 | LSTM + DSSF | 23.51 | 28.59 | 33.25 | 35.11 | 1.67 | 3.15 | 9.73 | 15.75 | Gain | 7.75 | 9.25 | 16.87 | 19.38 | 21.01 | 14.96 | 9.45 | 7.95 | DeepDiffuse | 18.34 | 25.93 | 28.63 | 29.89 | 1.61 | 3.06 | 9.78 | 15.84 | DeepDiffuse + DSSF | 18.92 | 26.97 | 32.41 | 34.45 | 1.89 | 3.37 | 10.21 | 17.27 | Gain | 3.16 | 4.01 | 13.20 | 15.25 | 17.39 | 10.13 | 4.39 | 9.02 | HiDAN | 22.34 | 25.87 | 28.51 | 29.41 | 1.90 | 3.54 | 10.03 | 15.86 | HiDAN + DSSF | 23.11 | 27.67 | 32.11 | 34.84 | 2.11 | 3.83 | 11.31 | 17.12 | Gain | 3.46 | 6.95 | 12.62 | 18.46 | 11.05 | 8.19 | 12.76 | 7.94 |
|
|