Research Article

The Role of Medication Data to Enhance the Prediction of Alzheimer’s Progression Using Machine Learning

Table 3

The performance for the sMCI vs pMCI task.

Testing performanceCross-validation performance
ModelDatasetARF1ARF1

RFCS82.9863.6463.6463.6487.76  4.088.56  5.387.14  6.387.66  4.0
AM59.5733.3372.7345.7173.56  5.270.70  5.181.05  7.975.37  4.8
AM-CS85.1166.6772.7369.5787.90  4.187.47  4.888.68  6.787.96  4.2

DTCS87.1675.0081.8278.2689.30  3.788.37  4.788.97  4.788.58  3.6
AM55.3240.7772.7352.2572.79  5.469.71  4.481.03  8.874.79  5.2
AM-CS89.3680.0072.7376.1989.54  3.689.34  5.189.58  6.989.27  3.9

LRCS80.8558.3363.6460.8784.86  4.086.86  6.182.55  4.684.53  3.9
AM61.7046.7872.7356.9367.59  4.667.68  4.667.93  5.467.68  4.4
AM-CS87.2376.4777.4776.9687.07  4.187.42  4.986.90  6.686.99  4.3

SVMCS83.5683.5284.0183.5683.95  4.583.86  4.684.61  4.483.95  4.5
AM69.6869.4770.2169.6867.51  4.067.07  4.168.55  4.567.51  4.0
AM-CS86.5786.5786.6586.5787.10  4.787.06  4.787.48  4.687.1  4.72

KNNCS81.9481.5185.2381.9483.41  3.682.99  3.986.66  3.083.41  3.6
AM75.6974.9079.4575.6966.39  6.765.46  7.867.71  6.666.39  6.7
AM-CS75.2374.9276.5075.2379.62  4.479.44  4.580.59  4.479.62  4.9