Research Article
Word Sequential Using Deep LSTM and Matrix Factorization to Handle Rating Sparse Data for E-Commerce Recommender System
| | Number | Tools and library | Specification |
| | 1 | Processor | Intel Xeon quad core, 2.4 GHz | | 2 | Memory | 32 GB | | 3 | GPU | Nvidia Tesla P100 PCI-E 12 GB | | 4 | Tensor flow | Deep learning tools | | 5 | Keras | Deep learning tools | | 6 | Anaconda | Web interface | | 7 | Python | Tool programming | | 8 | Scikit-learn | Evaluation metrics, ML module | | 9 | Pylearn | | | 10 | Surface | RecSys SVD | | 11 | NLTK | NLP module | | 12 | Matplotlib | Data analytics visualization | | 13 | GLOVE | Word vector representation | | 14 | NumPy | Matrix factorization |
|
|