Research Article

Cost-Sensitive Classification for Evolving Data Streams with Concept Drift and Class Imbalance

Algorithm 1

Cost-sensitive ReliefF feature select algorithm.
Input: D: data in sliding window; F: feature set; k: number of neighbors; r: number of iterations
Output: Feature weight vector
(1)Begin
(2)  for all f ∈ F do
(3)    Wf = 0;
(4)  end for
(5)  for i = 1 to r do
(6)    random select x ∈ D;
(7)    sampling xj ∈ D, if yj = y then add xj to Hi, otherwise add to Mj, until |Hi| = |Mj| = k;
(8)   end for
(9)   for all f ∈ F do
(10)    Update Wf according to equation (5);
(11)   endfor
(12)  endfor
(13)  Select the top p% of the features;
(14)end.