Research Article

An Unsupervised Deep Feature Learning Model Based on Parallel Convolutional Autoencoder for Intelligent Fault Diagnosis of Main Reducer

Table 2

The architecture and parameter values of the proposed model.

ModelOriginal vibrational signals
Reshaped images in time domainSpectrogram in time-frequency domain

Parallel feature learning model based on PCAEConv116 × 12 × 12Conv116 × 12 × 12
BN1BN1
Down-samp1Pool size = 2 × 2Down-samp1Pool size = 2 × 2
Dropout10.5Drop10.5
Conv232 × 6 × 6Conv232 × 6 × 6
BN2BN2
Down-samp2Pool size = 2 × 2Down-samp2Pool size = 2 × 2
Conv364 × 6 × 6Conv364 × 6 × 6
Dropout20.5Drop20.5

Fault classifier based on DNNFlatten layer
Full connection layer 132
Full connection layer 216
Full connection layer 37
SoftmaxN/A
OutputPredicted vector