Research Article
Enhanced Differential Evolution Algorithm with Local Search Based on Hadamard Matrix
Algorithm 2
New framework of DE with HLS.
| Input: D, NP, F, CR, P, MaxFEs | (1) | Randomly initialize population pop | (2) | Evaluate the pop by objective function obj_func, get fit | (3) | FEs = NP | (4) | while FEs < MaxFEs do | (5) | for i = 1: NP do | (6) | Execute the mutation operator to generate a mutation vector | (7) | Execute the crossover operator to generate a trial vector | (8) | Evaluate the trial vector to get fit_ui | (9) | FEs = FEs + 1 | (10) | if fit_ui < fit(i) | (11) | pop(i,:) = | (12) | fit(i) = fit_ui | (13) | else | (14) | if rand < P | (15) | offspring = HLS(, pop(i, :)) | (16) | ovalue = obj_func(offspring) | (17) | FEs = FEs + 4; | (18) | [min_value, min_index] = min(ovalue) | (19) | if min_value < fit(i) | (20) | pop(i, :) = offspring(min_index) | (21) | fit(i) = min_value | (22) | end | (23) | end | (24) | end | (25) | end | (26) | end | | Output: optimal solution |
|