Research Article
A Multiscale Clustering Approach for Non-IID Nominal Data
Algorithm
1 Benchmark-scale clustering algorithm (BSCA).
| | Input: raw dataset | | Output: clustering result of benchmark-scale dataset | | 1: Data preprocessing and constructing multiscale dataset MD | | 2: Choose benchmark-scale dataset MDi[j] from MDi = {{},{},…, {}} | | 3: foreach MDi[j]: | | 4: compute matri_W = according to (4) | | 5: AdjD = getAdjD(matri_W) | | 6: LnM = AdjD-matri_W | | 7: DnM = AdjD-1/2 | | 8: LM = DnM ╳ LnM ╳ DnM | | 9: value, vector = getEigenvector (LM, N) | | 10: clusters = KMeans(N) | | 11: st = clusters.fit(vector) | | 12: Cl = st.labels_ | | 13: Cc = st. cluster_centers_ | | 14: Rcenter[i]j = Cc||Cl | | 15: endfor | | 16: return Rcenter[] |
|