Research Article

A Multiscale Clustering Approach for Non-IID Nominal Data

Algorithm 1 Benchmark-scale clustering algorithm (BSCA).
Input: raw dataset
 Output: clustering result of benchmark-scale dataset
 1: Data preprocessing and constructing multiscale dataset MD
 2: Choose benchmark-scale dataset MDi[j] from MDi = {{},{},…, {}}
 3: foreach MDi[j]:
 4:  compute matri_W =  according to (4)
 5:  AdjD = getAdjD(matri_W)
 6:  LnM = AdjD-matri_W
 7:  DnM = AdjD-1/2
 8:  LM = DnM ╳ LnM ╳ DnM
 9:  value, vector = getEigenvector (LM, N)
 10:  clusters = KMeans(N)
 11:  st = clusters.fit(vector)
 12:  Cl = st.labels_
 13:  Cc = st. cluster_centers_
 14:  Rcenter[i]j = Cc||Cl
 15: endfor
 16: return Rcenter[]