Research Article

Fusing Part-of-Speech Information in Low-Resource Neural Paraphrase Generation

Table 3

Performance of RNN-based models on ParaNMT datasets.

DatasetModelBLEUROUGE-1ROUGE-2ROUGE-L

ParaNMT50Kbase10.96 (±0.07)35.12 (±0.13)14.7 (±0.1)32.84 (±0.14)
add11.27 (±0.1)†††35.75 (±0.16)†††15.1 (±0.11)†††33.44 (±0.14)†††
cat11.24 (±0.07)†††35.54 (±0.12)†††15.0 (±0.11)†††33.28 (±0.13)†††
dc11.09 (±0.16)35.85 (±0.51)††15.05 (±0.37)33.56 (±0.5)††

ParaNMT100Kbase12.35 (±0.13)38.98 (±0.12)16.99 (±0.12)36.29 (±0.1)
add12.6 (±0.12)†††39.4 (±0.24)†††17.36 (±0.16)†††36.72 (±0.23)†††
cat12.59 (±0.08)†††39.31 (±0.11)†††17.26 (±0.09)†††36.62 (±0.1)†††
dc12.3 (±0.13)39.35 (±0.11)†††17.17 (±0.1)††36.64 (±0.1)†††