Research Article

Fusing Part-of-Speech Information in Low-Resource Neural Paraphrase Generation

Table 6

Performance of Transformer-based models on ParaNMT datasets.

DatasetModelBLEUROUGE-1ROUGE-2ROUGE-L

ParaNMT50Kbase13.7 (±0.47)41.7 (±0.66)19.29 (±0.5)39.54 (±0.65)
add14.04 (±0.2)42.37 (±0.15)††19.68 (±0.21)40.18 (±0.17)††
cat14.05 (±0.17)42.55 (±0.23)††19.77 (±0.17)40.34 (±0.24)††
dc13.84 (±0.07)41.97 (±0.09)19.4 (±0.06)39.78 (±0.08)

ParaNMT100Kbase15.8 (±0.23)45.5 (±0.21)22.01 (±0.21)43.03 (±0.22)
add15.85 (±0.19)45.76 (±0.3)22.14 (±0.25)43.3 (±0.27)
cat15.94 (±0.06)46.09 (±0.17)†††22.34 (±0.09)†††43.58 (±0.12)†††
dc15.38 (±0.1)45.28 (±0.06)21.69 (±0.09)42.76 (±0.08)