Research Article

Intelligent Malaysian Sign Language Translation System Using Convolutional-Based Attention Module with Residual Network

Table 1

Classification report of CBAM-2DResNet “within blocks.”

PrecisionRecallF1-scoreSupport
Within blocksBefore classifierWithin blocksBefore classifierWithin blocksBefore classifier

A0.990.991.001.000.990.99885
B1.001.001.001.001.001.00844
C1.001.001.001.001.001.00932
D1.001.001.001.001.001.00865
E1.001.000.990.990.990.99893
F1.001.001.001.001.001.00854
H1.001.001.001.001.001.00884
I0.990.991.001.000.990.99854
K0.970.970.980.980.980.98865
L1.001.001.001.001.001.00881
M1.001.000.980.980.990.99886
N0.990.991.001.000.990.99944
O1.001.000.990.991.001.00879
P0.990.991.001.001.001.00883
Q1.001.000.990.991.001.00913
R1.001.000.980.980.990.99917
S0.990.990.990.990.990.99874
U0.990.990.990.990.990.99860
V0.970.970.980.980.970.97876
W1.001.001.001.001.001.00907
X0.990.991.001.000.990.99827
Y0.990.991001001.001.00846
Accuracy0.990.9919360
Macro avg.0.990.990.990.990.990.9919360
Weighted avg.0.990.990.990.990.990.9919360