Research Article
Intelligent Malaysian Sign Language Translation System Using Convolutional-Based Attention Module with Residual Network
Table 1
Classification report of CBAM-2DResNet “within blocks.”
| | Precision | Recall | F1-score | Support | Within blocks | Before classifier | Within blocks | Before classifier | Within blocks | Before classifier | |
| A | 0.99 | 0.99 | 1.00 | 1.00 | 0.99 | 0.99 | 885 | B | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 844 | C | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 932 | D | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 865 | E | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 0.99 | 893 | F | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 854 | H | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 884 | I | 0.99 | 0.99 | 1.00 | 1.00 | 0.99 | 0.99 | 854 | K | 0.97 | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 865 | L | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 881 | M | 1.00 | 1.00 | 0.98 | 0.98 | 0.99 | 0.99 | 886 | N | 0.99 | 0.99 | 1.00 | 1.00 | 0.99 | 0.99 | 944 | O | 1.00 | 1.00 | 0.99 | 0.99 | 1.00 | 1.00 | 879 | P | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 883 | Q | 1.00 | 1.00 | 0.99 | 0.99 | 1.00 | 1.00 | 913 | R | 1.00 | 1.00 | 0.98 | 0.98 | 0.99 | 0.99 | 917 | S | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 874 | U | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 860 | V | 0.97 | 0.97 | 0.98 | 0.98 | 0.97 | 0.97 | 876 | W | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 907 | X | 0.99 | 0.99 | 1.00 | 1.00 | 0.99 | 0.99 | 827 | Y | 0.99 | 0.99 | 100 | 100 | 1.00 | 1.00 | 846 | Accuracy | | | | | 0.99 | 0.99 | 19360 | Macro avg. | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 19360 | Weighted avg. | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 19360 |
|
|