Research Article
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
Table 1
Performance comparison of different methods on PeMS-BAY with different number of nodes.
| Model | 24 nodes | 56 nodes | 88 nodes | 232 nodes | 325 nodes | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE |
| HA | 3.01 | 6.15 | 3.20 | 6.37 | 3.11 | 6.08 | 2.90 | 5.67 | 2.88 | 5.99 | VAR | 2.31 | 4.52 | 2.44 | 4.55 | 2.40 | 4.44 | 2.31 | 4.14 | 2.33 | 4.12 | DCRNN | 1.94 | 4.46 | 2.02 | 4.69 | 1.90 | 4.25 | 1.75 | 3.87 | 1.73 | 3.89 | STGCN | 2.22 | 4.84 | 2.25 | 4.82 | 2.18 | 4.66 | 1.89 | 4.15 | 1.89 | 4.31 | ST-MetaNet | 1.79 | 4.35 | 1.85 | 4.32 | 1.77 | 4.13 | 1.78 | 4.16 | 1.75 | 4.09 | GraphWaveNet | 1.79 | 4.21 | 1.79 | 4.10 | 1.73 | 3.87 | 1.60 | 3.58 | 1.58 | 3.54 | MSTGACN (ours) | 1.70 | 3.90 | 1.72 | 3.84 | 1.69 | 3.77 | 1.63 | 3.57 | 1.63 | 3.58 |
|
|