Research Article
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
Table 2
Performance comparison of different methods on METR-LA with different number of nodes.
| Model | 24 nodes | 56 nodes | 80 nodes | 136 nodes | 207 nodes | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE |
| HA | 6.82 | 11.26 | 6.47 | 10.91 | 6.91 | 11.34 | 7.37 | 11.83 | 7.50 | 11.93 | VAR | 4.58 | 8.51 | 4.61 | 8.44 | 4.73 | 8.40 | 4.74 | 8.34 | 4.68 | 8.37 | DCRNN | 3.64 | 7.46 | 3.32 | 6.83 | 4.20 | 9.99 | 3.10 | 6.29 | 3.17 | 6.47 | STGCN | 6.06 | 9.35 | 6.03 | 9.11 | 6.03 | 9.12 | 6.09 | 9.08 | 3.65 | 7.46 | ST-MetaNet | 3.25 | 6.82 | 3.03 | 6.33 | 3.10 | 6.37 | 3.00 | 6.20 | 3.06 | 6.23 | GraphWaveNet | 3.22 | 6.52 | 3.01 | 6.14 | 3.09 | 6.14 | 3.02 | 6.07 | 3.04 | 6.09 | MSTGACN (ours) | 3.22 | 6.47 | 3.01 | 6.09 | 3.11 | 6.18 | 3.06 | 6.10 | 3.14 | 6.16 |
|
|