Research Article
A Computer-Aided Diagnosis System Using Deep Learning for Multiclass Skin Lesion Classification
Table 2
Classification accuracy of fine-tuned ResNet-101 deep features using augmented HAM10000 dataset.
| | Classifier | Recall rate (%) | Precision rate (%) | FNR (%) | AUC | Accuracy (%) | Time (sec) | F1-score (%) |
| | LSVM | 86.00 | 86.28 | 14.00 | 0.98 | 85.5 | 746.2 | 86.14 | | QSVM | 91.57 | 91.71 | 8.428 | 0.992 | 91.1 | 1010.2 | 91.64 | | CSVM | 92.71 | 92.42 | 7.285 | 0.992 | 92.1 | 11321.1 | 92.56 | | MGSVM | 89.42 | 89.42 | 10.57 | 0.988 | 88.9 | 1919.4 | 89.42 | | CKNN | 78.87 | 77.85 | 21.14 | 0.961 | 77.2 | 268.2 | 78.36 | | CKNN | 58.42 | 63.00 | 41.27 | 0.887 | 58.9 | 263.6 | 60.62 | | WKNN | 84.85 | 84.00 | 15.14 | 0.977 | 83.3 | 260.5 | 84.42 | | EBT | 56.57 | 56.57 | 43.42 | 0.855 | 57.2 | 1544.5 | 56.57 | | ESKNN | 80.28 | 92.28 | 19.71 | 0.99 | 92.1 | 4590.9 | 85.86 | | ESD | 85.85 | 86.28 | 14.14 | 0.98 | 85.6 | 821.79 | 86.06 |
|
|
The bold value represents best ones.
|