Research Article

Skin Cancer Detection Using Kernel Fuzzy C-Means and Improved Neural Network Optimization Algorithm

Table 2

The simulation results of the comparative algorithms on the studied benchmark functions, moth-flame optimization (MFO) algorithm [28], world cup optimizer (WCO) [19], and the original neural network algorithm (NNA).

Algorithm

MVO [27]Min17.580.00240.003119.3806.37e − 8
Max7.29e + 3436.153.86e + 52.37e + 35.39e − 74.19e − 8
Mean2.96e + 3280.164.19e + 467.256.15e − 91.27e − 7
Std5.79e + 295.376.37e + 411.623.19e − 83.07e − 7
MFO [28]Min28.142.570.0516.294.38e − 68.39
Max129.084.189.2753.490.015110.35
Mean80.4623.094.5230.170.0235.08
Std22.461.641.733.280.0124.63
WCO [19]Min7.395.13e − 55.92e − 52.571.94e − 86.38e − 9
Max1.38e + 20.2640.0174.127.51e − 87.29e − 8
Mean105.370.05730.0243.286.48e − 91.18e − 9
Std14.830.08733.28e − 51.234.29e − 93.19e − 8
NNA [29]Min4.916.29e − 219.75e − 90.0179.37e − 165.9e − 17
Max45.2234.39e − 181.19e − 84.622.58e − 125.19 e − 16
Mean13.836.30e − 185.94e − 80.5323.42e − 136.67e − 16
Std5.293.62e − 216.53e − 90.421.97e − 137.50e − 17
INNAMin5.1615.26e − 226.37e − 116.38e − 157.26e − 76.71e − 39
Max111.576.76e − 204.29e − 103.95e − 140.02349.43e − 35
Mean24.132.48e − 201.17e − 101.09e − 143.11e − 54.57e − 6
Std12.286.19e − 215.64e − 119.64e − 1511.97e − 79.55e − 36