Research Article

EGAT: Extended Graph Attention Network for Pedestrian Trajectory Prediction

Table 5

Comparison with the state-of-the-art. Top-1, Top-2, and Top-3 results are shown in red, green, and blue.

DatasetETHHOTELUNIVZARA1ZARA2AVG
MetricsADEFDEADEFDEADEFDEADEFDEADEFDEADEFDE

Linear [3]1.332.940.390.720.821.590.621.210.771.480.791.59
SR-LSTM-2 [4]0.631.250.370.740.511.100.410.900.320.700.450.94
S-LSTM [3]1.092.350.791.760.671.400.471.000.561.170.721.54
S-GAN-P [5]0.871.620.671.370.761.520.350.680.420.840.611.21
SoPhie [6]0.701.430.761.670.541.240.300.630.380.780.541.15
CGNS [17]0.621.400.700.930.481.220.320.590.350.710.490.97
PIF [30]0.731.650.300.590.601.270.380.810.310.680.461.00
STSGN [26]0.751.630.631.010.481.080.300.650.260.570.480.99
GAT [8]0.681.290.681.400.571.290.290.600.370.750.521.07
Social-BiGAT [8]0.691.290.491.010.551.320.300.620.360.750.481.00
Social-STGCNN [10]0.641.110.490.850.440.790.340.530.300.480.440.75
STGAT-20v-20 [9]0.651.120.350.660.521.100.340.690.290.600.430.83
EGAT0.571.030.300.580.501.090.330.650.260.570.390.78