Research Article
EGAT: Extended Graph Attention Network for Pedestrian Trajectory Prediction
Table 5
Comparison with the state-of-the-art. Top-1, Top-2, and Top-3 results are shown in red, green, and blue.
| Dataset | ETH | HOTEL | UNIV | ZARA1 | ZARA2 | AVG | Metrics | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE |
| Linear [3] | 1.33 | 2.94 | 0.39 | 0.72 | 0.82 | 1.59 | 0.62 | 1.21 | 0.77 | 1.48 | 0.79 | 1.59 | SR-LSTM-2 [4] | 0.63 | 1.25 | 0.37 | 0.74 | 0.51 | 1.10 | 0.41 | 0.90 | 0.32 | 0.70 | 0.45 | 0.94 | S-LSTM [3] | 1.09 | 2.35 | 0.79 | 1.76 | 0.67 | 1.40 | 0.47 | 1.00 | 0.56 | 1.17 | 0.72 | 1.54 | S-GAN-P [5] | 0.87 | 1.62 | 0.67 | 1.37 | 0.76 | 1.52 | 0.35 | 0.68 | 0.42 | 0.84 | 0.61 | 1.21 | SoPhie [6] | 0.70 | 1.43 | 0.76 | 1.67 | 0.54 | 1.24 | 0.30 | 0.63 | 0.38 | 0.78 | 0.54 | 1.15 | CGNS [17] | 0.62 | 1.40 | 0.70 | 0.93 | 0.48 | 1.22 | 0.32 | 0.59 | 0.35 | 0.71 | 0.49 | 0.97 | PIF [30] | 0.73 | 1.65 | 0.30 | 0.59 | 0.60 | 1.27 | 0.38 | 0.81 | 0.31 | 0.68 | 0.46 | 1.00 | STSGN [26] | 0.75 | 1.63 | 0.63 | 1.01 | 0.48 | 1.08 | 0.30 | 0.65 | 0.26 | 0.57 | 0.48 | 0.99 | GAT [8] | 0.68 | 1.29 | 0.68 | 1.40 | 0.57 | 1.29 | 0.29 | 0.60 | 0.37 | 0.75 | 0.52 | 1.07 | Social-BiGAT [8] | 0.69 | 1.29 | 0.49 | 1.01 | 0.55 | 1.32 | 0.30 | 0.62 | 0.36 | 0.75 | 0.48 | 1.00 | Social-STGCNN [10] | 0.64 | 1.11 | 0.49 | 0.85 | 0.44 | 0.79 | 0.34 | 0.53 | 0.30 | 0.48 | 0.44 | 0.75 | STGAT-20v-20 [9] | 0.65 | 1.12 | 0.35 | 0.66 | 0.52 | 1.10 | 0.34 | 0.69 | 0.29 | 0.60 | 0.43 | 0.83 | EGAT | 0.57 | 1.03 | 0.30 | 0.58 | 0.50 | 1.09 | 0.33 | 0.65 | 0.26 | 0.57 | 0.39 | 0.78 |
|
|