Research Article
[Retracted] Smart Heart Disease Prediction System with IoT and Fog Computing Sectors Enabled by Cascaded Deep Learning Model
Table 3
Comparative analysis of the smart healthcare model with metaheuristic-based algorithms.
| Measures | PSO-CCNN [28] | GWO-CCNN [29] | WOA-CCNN [30] | DHOA-CCNN [31] | GSO-CCNN |
| “Accuracy” | 0.9408 | 0.9366 | 0.9344 | 0.9481 | 0.9499 | “Sensitivity” | 0.9362 | 0.9264 | 0.9208 | 0.9926 | 0.93483 | “Specificity” | 0.9454 | 0.9468 | 0.948 | 0.9036 | 0.9725 | “Precision” | 0.94489 | 0.94569 | 0.94655 | 0.91148 | 0.98077 | “FPR” | 0.0546 | 0.0532 | 0.052 | 0.0964 | 0.0275 | “FNR” | 0.0638 | 0.0736 | 0.0792 | 0.0074 | 0.065167 | “NPV” | 0.9454 | 0.9468 | 0.948 | 0.9036 | 0.9725 | “FDR” | 0.055107 | 0.054308 | 0.053454 | 0.088522 | 0.019234 | “F1-score” | 0.94053 | 0.93595 | 0.9335 | 0.95031 | 0.95725 | “MCC” | 0.88164 | 0.87338 | 0.86912 | 0.89977 | 0.89834 |
|
|