Research Article
[Retracted] Smart Heart Disease Prediction System with IoT and Fog Computing Sectors Enabled by Cascaded Deep Learning Model
Table 4
Comparative analysis of the designed smart healthcare model with existing classifiers.
| Measures | DNN [32] | RNN [33] | LSTM [34] | CNN [35] | CCNN [26] | GSO-CCNN |
| “Accuracy” | 0.6767 | 0.7558 | 0.8098 | 0.9085 | 0.9158 | 0.9499 | “Sensitivity” | 0.97889 | 0.88907 | 0.98654 | 0.94621 | 0.905 | 0.93483 | “Specificity” | 0.42945 | 0.65526 | 0.61833 | 0.86845 | 0.925 | 0.9725 | “Precision” | 0.58399 | 0.6605 | 0.73686 | 0.88423 | 0.91134 | 0.98077 | “FPR” | 0.57055 | 0.34474 | 0.38167 | 0.13155 | 0.075 | 0.0275 | “FNR” | 0.021111 | 0.11093 | 0.013462 | 0.053786 | 0.095 | 0.065167 | “NPV” | 0.42945 | 0.65526 | 0.61833 | 0.86845 | 0.925 | 0.9725 | “FDR” | 0.41601 | 0.3395 | 0.26314 | 0.11577 | 0.08866 | 0.019234 | “F1-score” | 0.73155 | 0.75793 | 0.84361 | 0.91417 | 0.90816 | 0.95725 | “MCC” | 0.47189 | 0.54579 | 0.65709 | 0.81859 | 0.83045 | 0.89834 |
|
|