Research Article
[Retracted] Smart Heart Disease Prediction System with IoT and Fog Computing Sectors Enabled by Cascaded Deep Learning Model
Table 6
Comparative analysis of the designed smart healthcare model with existing classifiers by taking the k-fold validation as 5.
| Measures | DNN [32] | RNN [33] | LSTM [34] | CNN [35] | CCNN [26] | GSO-CCNN |
| “Accuracy” | 0.8378 | 0.8671 | 0.897 | 0.8965 | 0.9218 | 0.9721 | “Sensitivity” | 0.91844 | 0.99837 | 0.89654 | 0.87961 | 0.93522 | 0.97667 | “Specificity” | 0.77182 | 0.76807 | 0.8975 | 0.91443 | 0.91037 | 0.96525 | “Precision” | 0.76707 | 0.76456 | 0.90454 | 0.91608 | 0.89887 | 0.97683 | “FPR” | 0.22818 | 0.23193 | 0.1025 | 0.085567 | 0.08963 | 0.03475 | “FNR” | 0.081556 | 0.001628 | 0.10346 | 0.12039 | 0.064783 | 0.023333 | “NPV” | 0.77182 | 0.76807 | 0.8975 | 0.91443 | 0.91037 | 0.96525 | “FDR” | 0.23293 | 0.23544 | 0.09546 | 0.083923 | 0.10113 | 0.023171 | “F1-score” | 0.83596 | 0.86596 | 0.90052 | 0.89747 | 0.91668 | 0.97675 | “MCC” | 0.68888 | 0.7647 | 0.79378 | 0.79374 | 0.84365 | 0.94188 |
|
|