Research Article
An Ensemble Learning Method Based on an Evidential Reasoning Rule considering Combination Weighting
Table 2
Ensemble accuracy of the big fish dataset.
| | | DIE | DIR | IER | MIE | MIR |
| | EW | 0.9578 | 0.9455 | 0.9565 | 0.9608 | 0.9555 | | COV | 0.9578 | 0.9460 | 0.9570 | 0.9608 | 0.9558 | | CRITIC | 0.9583 | 0.9460 | 0.9575 | 0.9605 | 0.9558 | | AHP | 0.9640 | 0.9475 | 0.9600 | 0.9595 | 0.9573 | | EW + AHP | 0.9583 | 0.9465 | 0.9570 | 0.9608 | 0.9560 | | COV + AHP | 0.9583 | 0.9468 | 0.9573 | 0.9608 | 0.9560 | | CRITIC + AHP | 0.9583 | 0.9468 | 0.9570 | 0.9608 | 0.9563 | | EWAHP | 0.9655 | 0.9470 | 0.9595 | 0.9628 | 0.9573 | | COVAHP | 0.9655 | 0.9473 | 0.9605 | 0.9625 | 0.9570 | | CRITICAHP | 0.9655 | 0.9465 | 0.9605 | 0.9623 | 0.9568 | | EW(+)AHP | 0.9605 | 0.9465 | 0.9585 | 0.9605 | 0.9565 | | COV(+)AHP | 0.9608 | 0.9468 | 0.9585 | 0.9603 | 0.9565 | | CRITIC(+)AHP | 0.9613 | 0.9468 | 0.9585 | 0.9603 | 0.9565 | | EW()AHP | 0.9635 | 0.9468 | 0.9603 | 0.9603 | 0.9578 | | COV()AHP | 0.9635 | 0.9473 | 0.9603 | 0.9598 | 0.9585 | | CRITIC()AHP | 0.9638 | 0.9473 | 0.9603 | 0.9593 | 0.9580 | | EW(rg)AHP | 0.9605 | 0.9465 | 0.9585 | 0.9610 | 0.9565 | | COV(rg)AHP | 0.9605 | 0.9470 | 0.9585 | 0.9605 | 0.9565 | | CRITIC(rg)AHP | 0.9608 | 0.9468 | 0.9585 | 0.9603 | 0.9568 |
|
|