Research Article
An Ensemble Learning Method Based on an Evidential Reasoning Rule considering Combination Weighting
Table 2
Ensemble accuracy of the big fish dataset.
| | DIE | DIR | IER | MIE | MIR |
| EW | 0.9578 | 0.9455 | 0.9565 | 0.9608 | 0.9555 | COV | 0.9578 | 0.9460 | 0.9570 | 0.9608 | 0.9558 | CRITIC | 0.9583 | 0.9460 | 0.9575 | 0.9605 | 0.9558 | AHP | 0.9640 | 0.9475 | 0.9600 | 0.9595 | 0.9573 | EW + AHP | 0.9583 | 0.9465 | 0.9570 | 0.9608 | 0.9560 | COV + AHP | 0.9583 | 0.9468 | 0.9573 | 0.9608 | 0.9560 | CRITIC + AHP | 0.9583 | 0.9468 | 0.9570 | 0.9608 | 0.9563 | EWAHP | 0.9655 | 0.9470 | 0.9595 | 0.9628 | 0.9573 | COVAHP | 0.9655 | 0.9473 | 0.9605 | 0.9625 | 0.9570 | CRITICAHP | 0.9655 | 0.9465 | 0.9605 | 0.9623 | 0.9568 | EW(+)AHP | 0.9605 | 0.9465 | 0.9585 | 0.9605 | 0.9565 | COV(+)AHP | 0.9608 | 0.9468 | 0.9585 | 0.9603 | 0.9565 | CRITIC(+)AHP | 0.9613 | 0.9468 | 0.9585 | 0.9603 | 0.9565 | EW()AHP | 0.9635 | 0.9468 | 0.9603 | 0.9603 | 0.9578 | COV()AHP | 0.9635 | 0.9473 | 0.9603 | 0.9598 | 0.9585 | CRITIC()AHP | 0.9638 | 0.9473 | 0.9603 | 0.9593 | 0.9580 | EW(rg)AHP | 0.9605 | 0.9465 | 0.9585 | 0.9610 | 0.9565 | COV(rg)AHP | 0.9605 | 0.9470 | 0.9585 | 0.9605 | 0.9565 | CRITIC(rg)AHP | 0.9608 | 0.9468 | 0.9585 | 0.9603 | 0.9568 |
|
|