Research Article

Fast Polynomial Time Approximate Solution for 0-1 Knapsack Problem

Table 3

Mean relative error of upper bounds to the best upper bound of (KP) (ppm).

(No, R)UMT2UMTMUkmaxB(No, R)UMT2UMTMUkmaxB

(1, 103)4.66964.66964.68690(2, 103)0.01380.00310.04210.0174
(1, 104)91.41391.386981.44220(2, 104)0.03450.00750.04650.0189
(1, 105)60.260760.254243.27650(2, 105)0.01940.0050.03510.0164
(1, 106)61.036661.036600(2, 106)0.02580.00570.03910.0152
(1, 107)61.337261.337200(2, 107)0.02740.00690.04660.018
(3, 103)0.01160.00490.01790(4, 103)28.787628.787600
(3, 104)0.003100.01960.0044(4, 104)34.65634.651800
(3, 105)0.01480.00180.0270.016(4, 105)31.553531.545600
(3, 106)0.01140.00160.01660.0071(4, 106)27.508227.500100
(3, 107)0.00660.00220.01050.0031(4, 107)25.749325.746700
(5, 103)38.905438.905438.90540(6, 103)0000
(5, 104)0000(6, 104)0000
(5, 105)0000(6, 105)0000
(5, 106)0000(6, 106)0000
(5, 107)0000(6, 107)0000
(7, 103)0000(8, 103)0000
(7, 104)0000(8, 104)0000
(7, 105)0000(8, 105)22.860222.860200
(7, 106)0000(8, 106)0000
(7, 107)0000(8, 107)0000
(9, 103)0000(10, 103)0000
(9, 104)0000(10, 104)0000
(9, 105)16.134416.134400(10, 105)0000
(9, 106)30.144730.144700(10, 106)0000
(9, 107)8.91568.91568.91560(10, 107)0000

The best upper bound is min{UMT2, UMTM, Ukmax, B} in this paper.