Research Article

Fast Polynomial Time Approximate Solution for 0-1 Knapsack Problem

Table 8

Relation between (-1.0003121) and the optimal solution in Example 1.

iejd19l

24.8775.88531.2067459521.0067143851111
11.78562.79241.56384408611.0062194642111
47.09438.09921.14164892941.0025934943111
713.924914.93191.07231649871.0024727234111
57.88078.8851.12743791851.0017378195111
36.34937.35211.1579386731.0007357096111
1024.268825.27671.04153069101.0000097037111
68.55939.56161.11710069760.9995171928111
921.088122.09251.04762875790.9975438169111
1637.156638.16621.027171485160.99751960910111
819.611420.61481.05116411980.99702392211111
1332.773933.77971.030689054130.99514451712111
1839.610440.61751.025425141180.99422182713011
1127.344128.34721.03668433110.99420985914111
2747.875348.88481.02108603260.99393473515101
2040.736241.74321.024720028200.99375580616101
2142.456543.4631.023706617210.992696517001
1737.88738.8921.026526249170.99268214118111
2647.858348.8661.021055909270.99214026219100
1432.78733.78981.030585293140.99214025820111
2847.974648.98221.021002781280.9920024521100
2445.786846.79321.021980134230.9915137522000
1231.61832.61891.031656019120.99062032423010
1533.936834.93791.029498951150.99006643424010
1940.01441.01591.025038736190.98889060825010
3048.529649.53351.020686344300.98812200826000
2546.699747.70131.021447675250.98641694727000
2345.668846.66931.021907736240.98565211428000
2245.289646.28991.022086748220.985575429000
2948.244449.24481.020736085290.98471473230000

. is an initial solution constructed in descending order of efficiency.