Research Article
Two-Stage Intelligent DarkNet-SqueezeNet Architecture-Based Framework for Multiclass Rice Grain Variety Identification
Table 1
Description of SqueezeNet architecture.
| Layer name/type | Output size | Filter size/stride(if not a fire layer) | Depth | S1 × 1 (#1 × 1 squeeze) | e1 × 1 (#1 × 1 expand) | e3 × 3 (#3 × 3expand) |
| Input image | 224 × 224 | | | | | | Conv1 | 111 × 111 × 96 | 7 × 7/ (x96) | 1 | | | | Maxpool1 | 55 × 55 × 96 | 3 × 3/2 | 0 | | | | Fire 2 | 55 × 55 × 128 | | 2 | 16 | 64 | 64 | Fire 3 | 55 × 55 × 128 | | 2 | 16 | 64 | 64 | Fire 4 | 55 × 55 × 256 | | 2 | 32 | 128 | 128 | Maxpool4 | 27 × 27 × 256 | 3 × 3/2 | 0 | | | | Fire 5 | 27 × 27 × 256 | | 2 | 32 | 128 | 128 | Fire 6 | 27 × 27 × 384 | | 2 | 48 | 192 | 192 | Fire 7 | 27 × 27 × 384 | | 2 | 48 | 192 | 192 | Fire 8 | 27 × 27 × 512 | | 2 | 64 | 256 | 256 | Maxpool8 | 13 × 12 × 512 | 3 × 3/2 | 0 | | | | Fire 9 | 13 × 13 × 512 | | 2 | 64 | 256 | 256 | Conv10 | 13 × 13 × 5 | 1 × 1/1 (×5) | 1 | | | | Avgpool10 | 1 × 1 × 5 | 13 × 13/1 | 0 | | | |
|
|