Research Article
Research on a Machine Learning-Based Method for Assessing the Safety State of Historic Buildings
Table 2
KCCA-SVM recognition accuracy of different kernel functions.
| Datasets | Kernel functions | RMSE | Minimum value | Average value | Maximum value |
| ORL | Gaussian kernel | 8.322e − 2 | 8.581e − 2 | 8.676e − 2 | Sigmoid nucleus | 8.693e − 2 | 8.825e − 2 | 8.991e − 2 | Polynomial kernel | 9.592e − 2 | 9.674e − 2 | 1.201e − 1 |
| Yale | Gaussian kernel | 1.044e − 1 | 1.124e − 1 | 1.265e − 1 | Sigmoid nucleus | 9.817e − 2 | 9.924e − 2 | 1.063e − 1 | Polynomial kernel | 1.249e − 1 | 1.535e − 1 | 1.922e − 1 |
| AR | Gaussian kernel | 8.465e − 2 | 8.573e − 2 | 8.834e − 2 | Sigmoid nucleus | 7.835e − 2 | 7.902e − 2 | 8.064e − 2 | Polynomial kernel | 9.437e − 2 | 9.611e − 2 | 9.947e − 2 |
| PIE | Gaussian kernel | 7.916e − 2 | 8.111e − 2 | 8.259e − 2 | Sigmoid nucleus | 8.146e − 2 | 8.297e − 2 | 8.481e − 2 | Polynomial kernel | 1.098e − 1 | 1.244e − 1 | 1.367e − 1 |
|
|