Research Article

Using AAEHS-Net as an Attention-Based Auxiliary Extraction and Hybrid Subsampled Network for Semantic Segmentation

Table 1

Details of CEEM.

BlocksInput sizeLayersOutput size

CEEM1128 × 128 64 channelsMSM1 ADM1128 × 128 64 channels
MSM1128 × 128 64 channels(Doule conv k = 3, c = 64, s = 1) × 3128 × 128 64 channels
ASM1128 × 128 64 channelsConv2D (k = 1, c = 64, s = 1)128 × 128 64 channels
Dilated conv (k = 3, c = 64, r = 4)
CEEM264 × 64 128 channelsMSM2 ADM264 × 64 128 channels
MSM264 × 64 128 channels(Doule conv k = 3, c = 128, s = 1) × 464 × 64 128 channels
ASM264 × 64 128 channelsConv2D (k = 1, c = 128, s = 1)64 × 64 128 channels
Dilated conv (k = 3, c = 128, r = 3)
CEEM332 × 32 256 channelsMSM3 ADM332 × 32 256 channels
MSM332 × 32 256 channels(Doule conv k = 3, c = 256, s = 1) × 532 × 32 256 channels
ASM332 × 32 256 channelsConv2D (k = 1, c = 256, s = 1)32 × 32 256 channels
Dilated conv (k = 3, c = 256, r = 2)
CEEM416 × 16 512 channelsMSM416 × 16 512 channels
MSM416 × 16 512 channels(Doule conv k = 3, c = 512, s = 1) × 216 × 16 512 channels