Research Article
Using AAEHS-Net as an Attention-Based Auxiliary Extraction and Hybrid Subsampled Network for Semantic Segmentation
Table 2
Details of algorithm steps.
| Blocks | Input size | Output size |
| Input | 512 × 512 × 3 | | Conv2d c = 64, k = 7, s = 2 | 512 × 512 × 3 | 256 × 256 × 64 | Max pool | 256 × 256 × 64 | 128 × 128 × 64 | CEEM1 | 128 × 128 × 64 | 128 × 128 × 64 | HSM1 | 128 × 128 × 64 | 64 × 64 × 64 | CEEM2 | 64 × 64 × 64 | 64 × 64 × 128 | HSM2 | 64 × 64 × 128 | 32 × 32 × 128 | CEEM3 | 32 × 32 × 128 | 32 × 32 × 256 | HSM3 | 32 × 32 × 256 | 16 × 16 × 256 | CEEM4 | 16 × 16 × 256 | 16 × 16 × 512 | Transpose2d | 16 × 16 × 512 | 32 × 32 × 256 | Concat | 32 × 32 × 256 | 32 × 32 × 512 | (Conv2d, c = 256) 2 | 32 × 32 × 512 | 32 × 32 × 256 | Transpose2d | 32 × 32 × 256 | 64 × 64 × 128 | Concat | 64 × 64 × 128 | 64 × 64 × 256 | (Conv2d, c = 128) 2 | 64 × 64 × 256 | 64 × 64 × 128 | Transpose2d | 64 × 64 × 128 | 128 × 128 × 64 | Concat | 128 × 128 × 64 | 128 × 128 × 128 | (Conv2d, c = 64) 2 | 128 × 128 × 128 | 128 × 128 × 64 | Transpose2d | 128 × 128 × 64 | 256 × 256 × 32 | Concat | 256 × 256 × 32 | 256 × 256 × 96 | (Conv2d, c = 32) 2 | 256 × 256 × 96 | 256 × 256 × 32 | Transpose2d c = 32 | 256 × 256 × 32 | 512 × 512 × 32 | Conv2d c = 1 | 512 × 512 × 32 | 512 × 512 × 1 | Output | | 512 × 512 × 1 |
|
|