Research Article

Using AAEHS-Net as an Attention-Based Auxiliary Extraction and Hybrid Subsampled Network for Semantic Segmentation

Table 2

Details of algorithm steps.

BlocksInput sizeOutput size

Input512 × 512 × 3
Conv2d c = 64, k = 7, s = 2512 × 512 × 3256 × 256 × 64
Max pool256 × 256 × 64128 × 128 × 64
CEEM1128 × 128 × 64128 × 128 × 64
HSM1128 × 128 × 6464 × 64 × 64
CEEM264 × 64 × 6464 × 64 × 128
HSM264 × 64 × 12832 × 32 × 128
CEEM332 × 32 × 12832 × 32 × 256
HSM332 × 32 × 25616 × 16 × 256
CEEM416 × 16 × 25616 × 16 × 512
Transpose2d16 × 16 × 51232 × 32 × 256
Concat32 × 32 × 25632 × 32 × 512
(Conv2d, c = 256)  232 × 32 × 51232 × 32 × 256
Transpose2d32 × 32 × 25664 × 64 × 128
Concat64 × 64 × 12864 × 64 × 256
(Conv2d, c = 128)  264 × 64 × 25664 × 64 × 128
Transpose2d64 × 64 × 128128 × 128 × 64
Concat128 × 128 × 64128 × 128 × 128
(Conv2d, c = 64)  2128 × 128 × 128128 × 128 × 64
Transpose2d128 × 128 × 64256 × 256 × 32
Concat256 × 256 × 32256 × 256 × 96
(Conv2d, c = 32)  2256 × 256 × 96256 × 256 × 32
Transpose2d c = 32256 × 256 × 32512 × 512 × 32
Conv2d c = 1512 × 512 × 32512 × 512 × 1
Output512 × 512 × 1