Research Article
Using AAEHS-Net as an Attention-Based Auxiliary Extraction and Hybrid Subsampled Network for Semantic Segmentation
Table 8
Results of segmentation on the Massachusetts roads dataset.
| | Method | Accuracy | Dice | MIOU | AUC |
| | U-Net | 0.9535 | 0.6356 | 0.5138 | 0.9082 | | FPN | 0.9517 | 0.6370 | 0.5153 | 0.9056 | | Deeplabv3 | 0.9540 | 0.6326 | 0.5207 | 0.9071 | | MHSU-Net | 0.9577 | 0.6401 | 0.5231 | 0.9146 | | HAD-ResUNet | 0.9596 | 0.6397 | 0.5242 | 0.9140 | | MR-UNet | 0.9563 | 0.6441 | 0.5228 | 0.9149 | | CE-UNet | 0.9571 | 0.6437 | 0.5230 | 0.9157 | | Ours | 0.9623 | 0.6470 | 0.5265 | 0.9171 |
|
|
The bold value indicates the best value for the item.
|