Research Article
Abstractive Arabic Text Summarization Based on Deep Learning
Table 3
The result of applying GRU, LSTM, and BiLSTM with different layers at the encoder to the AHS dataset.
| Model | No. of layers | ROUGE-1 | ROUGE-2 | ROUGE-L | BLEU | Precision | Recall | F1 | Precision | Recall | F1 | Precision | Recall | F1 |
| GRU | 1 | 49.44 | 44.12 | 45.17 | 8.0 | 7.13 | 7.35 | 34.05 | 31.31 | 29.81 | 0.32 | 2 | 50.35 | 45.65 | 46.44 | 9.1 | 8.16 | 8.4 | 34.52 | 32.2 | 30.61 | 0.34 | 3 | 49.87 | 44.0 | 45.37 | 8.08 | 7.24 | 7.47 | 34.53 | 31.4 | 30.14 | 0.32 |
| LSTM | 1 | 53.76 | 48.87 | 50.1 | 11.78 | 10.73 | 10.99 | 37.1 | 34.1 | 33.44 | 0.38 | 2 | 54.82 | 49.53 | 50.93 | 12.27 | 11.29 | 11.51 | 37.71 | 34.46 | 33.93 | 0.39 | 3 | 53.04 | 47.99 | 49.3 | 11.47 | 10.29 | 10.64 | 37.15 | 33.78 | 33.26 | 0.37 |
| BiLSTM | 1 | 54.16 | 49.84 | 50.8 | 12.65 | 11.63 | 11.89 | 37.51 | 34.87 | 34.05 | 0.39 | 2 | 55.12 | 50.2 | 51.46 | 13.13 | 11.92 | 12.25 | 38.0 | 35.04 | 34.44 | 0.40 | 3 | 54.95 | 50.48 | 51.49 | 13.1 | 12.01 | 12.27 | 37.84 | 35.19 | 34.37 | 0.41 |
|
|
The highest result is given in bold.
|