Research Article
Abstractive Arabic Text Summarization Based on Deep Learning
Table 4
The result of applying GRU, LSTM, and BiLSTM with different layers at the encoder to the AMN dataset.
| Model | No. of layers | ROUGE-1 | ROUGE-2 | ROUGE-L | BLEU | Precision | Recall | F1 | Precision | Recall | F1 | Precision | Recall | F1 |
| GRU | 1 | 19.89 | 17.81 | 18.17 | 1.28 | 1.14 | 1.16 | 13.62 | 12.88 | 12.11 | 0.22 | 2 | 39.04 | 30.77 | 33.13 | 8.66 | 7.15 | 7.62 | 25.05 | 21.61 | 20.96 | 0.35 | 3 | 35.31 | 26.81 | 29.23 | 6.33 | 5.2 | 5.54 | 22.14 | 18.57 | 18.1 | 0.32 |
| LSTM | 1 | 39.41 | 32.66 | 34.78 | 11.47 | 9.91 | 10.38 | 26.76 | 23.52 | 23.28 | 0.34 | 2 | 43.47 | 36.23 | 38.2 | 14.5 | 12.71 | 13.28 | 31.13 | 27.01 | 27.14 | 0.36 | 3 | 36.26 | 32.35 | 33.34 | 10.36 | 9.61 | 9.76 | 25.68 | 23.66 | 23.05 | 0.349 |
| BiLSTM | 1 | 48.41 | 41.38 | 43.67 | 18.99 | 17.14 | 17.72 | 34.8 | 31.59 | 31.37 | 0.39 | 2 | 43.6 | 32.12 | 35.75 | 10.39 | 8.37 | 9.01 | 27.46 | 22.71 | 22.73 | 0.34 | 3 | 48.15 | 42.65 | 44.28 | 19.46 | 17.93 | 18.35 | 35.48 | 32.86 | 32.46 | 0.41 |
|
|
The highest result is given in bold.
|