Research Article

Abstractive Arabic Text Summarization Based on Deep Learning

Table 4

The result of applying GRU, LSTM, and BiLSTM with different layers at the encoder to the AMN dataset.

ModelNo. of layersROUGE-1ROUGE-2ROUGE-LBLEU
PrecisionRecallF1PrecisionRecallF1PrecisionRecallF1

GRU119.8917.8118.171.281.141.1613.6212.8812.110.22
239.0430.7733.138.667.157.6225.0521.6120.960.35
335.3126.8129.236.335.25.5422.1418.5718.10.32

LSTM139.4132.6634.7811.479.9110.3826.7623.5223.280.34
243.4736.2338.214.512.7113.2831.1327.0127.140.36
336.2632.3533.3410.369.619.7625.6823.6623.050.349

BiLSTM148.4141.3843.6718.9917.1417.7234.831.5931.370.39
243.632.1235.7510.398.379.0127.4622.7122.730.34
348.1542.6544.2819.4617.9318.3535.4832.8632.460.41

The highest result is given in bold.