Research Article

[Retracted] A Hybrid Algorithm of Ant Colony and Benders Decomposition for Large-Scale Mixed Integer Linear Programming

Algorithm 2

Procedures of hybrid algorithm of ant colony algorithm and benders decomposition.
Initialization: k: = 0, f = 0, o = 0; LB: = −∞, UB: = ∞; set an initial feasible solution , and algorithm stop condition ε = 0.
Generate the initial solution by ant colony algorithm:
Let  = 0.7, index = 1, Q = 104, m = 20, NCmax = 30;
Set : = ones (UBn − LBn + 1, n1 + n2)·(UBn − LBn + 1);
for i: = 1 ⟶ m do
 Randomly obtained m solutions.
end for
Find local minimum solution fmin;
Update and .
while index < NCmax − 1 do
for i: = 1 ⟶ m − 1 do
  Randomly obtained m − 1 new solutions.
end for
 Add local minimum solution to the new solutions;
 Update fmin, and ;
 index = index + 1.
end while
Obtain the initial solution .
Obtain upper bound by Benders decomposition:
while UB − LB > ε do
  Solve the PD.
  if Infeasible then
  Exit.
  end if
  if Unbounded then
   Obtain an extreme ray ;
   let f = f + 1;
   let ;
   Add a feasibility cut 0 to PFM.
  end if
  if Bounded then
   Obtain an extreme ray ;
   let o = o + 1;
   let ;
   Add an optimality cut to PFM;
   Obtain a upper bound, UB: = Min{UB, }.
end if
Obtain feasible solution and lower bound by feasible adjustment rule:
 Let maxiter: = 25,  = ,  = 1,  = 0.9;
 Set UBFM: = ∞, and set the loop stop condition λ = 10 − 4;
 Solve PFM and obtain the solution (x, θ);
 Let x = round(x), α1 = µα0;
 Update UBFM: = Min{UBFM, ||x − x0||2};
for i: = 1 ⟶ maxiter − 1 do
  if ||xi + 1 − xi||2 > λ then
  Let xi = x;
  Solve PFM;
  Update the solution (x, θ);
  if ||xi + 1 − xi||2 < UBFM then
   Let UBFM: = ||xi + 1 − xi||2;
    x = round (xi + 1);
   end if
  end if
 Update αi + 1: = µαi.
end for
 Update the lower bound, LB: = Max{LB, c};
k: = k + 1;
: = ;
end while
Return the optimum result