Research Article
Feature Subset Selection with Optimal Adaptive Neuro-Fuzzy Systems for Bioinformatics Gene Expression Classification
Table 2
Result analysis of FSS-OANFIS technique with different measures and datasets.
| | Class labels | Accuracy | Recall | Specificity | F-score | G-measure |
| | Leukemia dataset |
| | Class 0 | 83.33 | 100.00 | 50.00 | 88.89 | 89.44 |
| | Class 1 | 83.33 | 50.00 | 100.00 | 66.67 | 70.71 |
| | Average | 83.33 | 75.00 | 75.00 | 77.78 | 80.08 |
| | Prostate dataset |
| | Class 0 | 80.65 | 100.00 | 60.00 | 84.21 | 85.28 |
| | Class 1 | 80.65 | 60.00 | 100.00 | 75.00 | 77.46 |
| | Average | 80.65 | 80.00 | 80.00 | 79.61 | 81.37 |
| | Stanford dataset |
| | Class 0 | 73.33 | 33.33 | 100.00 | 50.00 | 57.74 |
| | Class 1 | 73.33 | 100.00 | 33.33 | 81.82 | 83.21 |
| | Average | 73.33 | 66.67 | 66.67 | 65.91 | 70.47 |
| | Colon dataset |
| | Class 0 | 89.47 | 92.31 | 83.33 | 92.31 | 92.31 |
| | Class 1 | 89.47 | 83.33 | 92.31 | 83.33 | 83.33 |
| | Average | 89.47 | 87.82 | 87.82 | 87.82 | 87.82 |
|
|