Research Article
Feature Subset Selection with Optimal Adaptive Neuro-Fuzzy Systems for Bioinformatics Gene Expression Classification
Table 3
Comparative analysis of FSS-OANFIS technique with existing approaches.
| | Methods | Accuracy | Sensitivity | Specificity | G-measure |
| | Leukemia dataset |
| | FSS-OANFIS | 83.33 | 75.00 | 75.00 | 80.08 |
| | AHSA-GS | 75.49 | 69.66 | 74.81 | 45.94 |
| | PSO algorithm | 80.59 | 74.95 | 73.96 | 68.07 |
| | DE algorithm | 68.67 | 63.01 | 63.62 | 64.80 |
| | Prostate dataset |
| | FSS-OANFIS | 80.65 | 80.00 | 80.00 | 81.37 |
| | AHSA-GS | 71.19 | 53.82 | 79.79 | 79.84 |
| | PSO algorithm | 68.78 | 63.63 | 70.15 | 66.01 |
| | DE algorithm | 62.77 | 60.37 | 63.22 | 67.94 |
| | Stanford dataset |
| | FSS-OANFIS | 73.33 | 66.67 | 66.67 | 70.47 |
| | AHSA-GS | 71.27 | 62.64 | 65.15 | 68.82 |
| | PSO algorithm | 72.80 | 60.82 | 60.17 | 61.74 |
| | DE algorithm | 66.93 | 63.80 | 59.16 | 61.48 |
| | Colon dataset |
| | FSS-OANFIS | 89.47 | 87.82 | 87.82 | 87.82 |
| | AHSA-GS | 61.02 | 48.07 | 64.04 | 43.62 |
| | PSO algorithm | 59.00 | 43.02 | 58.34 | 36.66 |
| | DE algorithm | 50.38 | 33.63 | 38.76 | 58.07 |
|
|