Research Article

Feature Subset Selection with Optimal Adaptive Neuro-Fuzzy Systems for Bioinformatics Gene Expression Classification

Table 3

Comparative analysis of FSS-OANFIS technique with existing approaches.

MethodsAccuracySensitivitySpecificityG-measure

Leukemia dataset

FSS-OANFIS83.3375.0075.0080.08

AHSA-GS75.4969.6674.8145.94

PSO algorithm80.5974.9573.9668.07

DE algorithm68.6763.0163.6264.80

Prostate dataset

FSS-OANFIS80.6580.0080.0081.37

AHSA-GS71.1953.8279.7979.84

PSO algorithm68.7863.6370.1566.01

DE algorithm62.7760.3763.2267.94

Stanford dataset

FSS-OANFIS73.3366.6766.6770.47

AHSA-GS71.2762.6465.1568.82

PSO algorithm72.8060.8260.1761.74

DE algorithm66.9363.8059.1661.48

Colon dataset

FSS-OANFIS89.4787.8287.8287.82

AHSA-GS61.0248.0764.0443.62

PSO algorithm59.0043.0258.3436.66

DE algorithm50.3833.6338.7658.07