Research Article
Artificial Intelligence Based Customer Churn Prediction Model for Business Markets
Table 2
Result Analysis of Various Feature Selection methods on Applied Dataset
| No. of Iterations | Dataset-1 | CSSO-FS | SSO-FS | KHO-FS | GWO-FS |
| 100 | 1.502 | 2.911 | 3.756 | 4.235 | 200 | 1.502 | 2.911 | 3.749 | 4.235 | 300 | 1.502 | 2.911 | 3.749 | 3.807 | 400 | 1.502 | 2.911 | 3.749 | 3.807 | 500 | 1.498 | 2.911 | 3.738 | 3.807 | 600 | 1.498 | 2.911 | 3.738 | 3.807 | 700 | 1.498 | 2.911 | 4.252 | 3.807 | 800 | 1.498 | 2.911 | 4.252 | 3.807 | 900 | 1.498 | 2.911 | 4.252 | 3.807 | 1000 | 1.498 | 2.911 | 3.721 | 3.807 | Average | 1.500 | 2.911 | 3.896 | 3.892 |
| No. of Iterations | Dataset-2 | CSSO-FS | SSO-FS | KHO-FS | GWO-FS | 100 | 1.620 | 3.025 | 3.858 | 3.936 | 200 | 1.620 | 3.025 | 3.858 | 3.932 | 300 | 1.620 | 3.025 | 3.838 | 3.932 | 400 | 1.620 | 3.025 | 3.838 | 3.932 | 500 | 1.614 | 3.015 | 3.838 | 3.932 | 600 | 1.614 | 3.015 | 3.838 | 3.932 | 700 | 1.614 | 3.015 | 3.838 | 3.932 | 800 | 1.593 | 3.005 | 3.838 | 3.932 | 900 | 1.593 | 3.005 | 3.838 | 3.930 | 1000 | 1.591 | 3.005 | 3.838 | 3.930 | Average | 1.610 | 3.016 | 3.842 | 3.932 |
| No. of Iterations | Dataset-3 | CSSO-FS | SSO-FS | KHO-FS | GWO-FS | 100 | 1.5325 | 2.9490 | 3.7770 | 3.8609 | 200 | 1.5325 | 2.9480 | 3.7770 | 3.8581 | 300 | 1.5325 | 2.9480 | 3.7770 | 3.8581 | 400 | 1.5325 | 2.9480 | 3.7770 | 3.8575 | 500 | 1.5216 | 2.9480 | 3.7750 | 3.8560 | 600 | 1.5216 | 2.9480 | 3.7730 | 3.8560 | 700 | 1.5194 | 2.9480 | 3.7730 | 3.8555 | 800 | 1.5194 | 2.9480 | 3.7730 | 3.8555 | 900 | 1.5191 | 2.9480 | 3.7730 | 3.8555 | 1000 | 1.5186 | 2.9480 | 3.7730 | 3.8555 | Average | 1.5250 | 2.9481 | 3.7748 | 3.8569 |
|
|