Research Article
Artificial Intelligence Based Customer Churn Prediction Model for Business Markets
Table 2
Result Analysis of Various Feature Selection methods on Applied Dataset
| | No. of Iterations | Dataset-1 | | CSSO-FS | SSO-FS | KHO-FS | GWO-FS |
| | 100 | 1.502 | 2.911 | 3.756 | 4.235 | | 200 | 1.502 | 2.911 | 3.749 | 4.235 | | 300 | 1.502 | 2.911 | 3.749 | 3.807 | | 400 | 1.502 | 2.911 | 3.749 | 3.807 | | 500 | 1.498 | 2.911 | 3.738 | 3.807 | | 600 | 1.498 | 2.911 | 3.738 | 3.807 | | 700 | 1.498 | 2.911 | 4.252 | 3.807 | | 800 | 1.498 | 2.911 | 4.252 | 3.807 | | 900 | 1.498 | 2.911 | 4.252 | 3.807 | | 1000 | 1.498 | 2.911 | 3.721 | 3.807 | | Average | 1.500 | 2.911 | 3.896 | 3.892 |
| | No. of Iterations | Dataset-2 | | CSSO-FS | SSO-FS | KHO-FS | GWO-FS | | 100 | 1.620 | 3.025 | 3.858 | 3.936 | | 200 | 1.620 | 3.025 | 3.858 | 3.932 | | 300 | 1.620 | 3.025 | 3.838 | 3.932 | | 400 | 1.620 | 3.025 | 3.838 | 3.932 | | 500 | 1.614 | 3.015 | 3.838 | 3.932 | | 600 | 1.614 | 3.015 | 3.838 | 3.932 | | 700 | 1.614 | 3.015 | 3.838 | 3.932 | | 800 | 1.593 | 3.005 | 3.838 | 3.932 | | 900 | 1.593 | 3.005 | 3.838 | 3.930 | | 1000 | 1.591 | 3.005 | 3.838 | 3.930 | | Average | 1.610 | 3.016 | 3.842 | 3.932 |
| | No. of Iterations | Dataset-3 | | CSSO-FS | SSO-FS | KHO-FS | GWO-FS | | 100 | 1.5325 | 2.9490 | 3.7770 | 3.8609 | | 200 | 1.5325 | 2.9480 | 3.7770 | 3.8581 | | 300 | 1.5325 | 2.9480 | 3.7770 | 3.8581 | | 400 | 1.5325 | 2.9480 | 3.7770 | 3.8575 | | 500 | 1.5216 | 2.9480 | 3.7750 | 3.8560 | | 600 | 1.5216 | 2.9480 | 3.7730 | 3.8560 | | 700 | 1.5194 | 2.9480 | 3.7730 | 3.8555 | | 800 | 1.5194 | 2.9480 | 3.7730 | 3.8555 | | 900 | 1.5191 | 2.9480 | 3.7730 | 3.8555 | | 1000 | 1.5186 | 2.9480 | 3.7730 | 3.8555 | | Average | 1.5250 | 2.9481 | 3.7748 | 3.8569 |
|
|