Research Article

Artificial Intelligence Based Customer Churn Prediction Model for Business Markets

Table 2

Result Analysis of Various Feature Selection methods on Applied Dataset

No. of IterationsDataset-1
CSSO-FSSSO-FSKHO-FSGWO-FS

1001.5022.9113.7564.235
2001.5022.9113.7494.235
3001.5022.9113.7493.807
4001.5022.9113.7493.807
5001.4982.9113.7383.807
6001.4982.9113.7383.807
7001.4982.9114.2523.807
8001.4982.9114.2523.807
9001.4982.9114.2523.807
10001.4982.9113.7213.807
Average1.5002.9113.8963.892

No. of IterationsDataset-2
CSSO-FSSSO-FSKHO-FSGWO-FS
1001.6203.0253.8583.936
2001.6203.0253.8583.932
3001.6203.0253.8383.932
4001.6203.0253.8383.932
5001.6143.0153.8383.932
6001.6143.0153.8383.932
7001.6143.0153.8383.932
8001.5933.0053.8383.932
9001.5933.0053.8383.930
10001.5913.0053.8383.930
Average1.6103.0163.8423.932

No. of IterationsDataset-3
CSSO-FSSSO-FSKHO-FSGWO-FS
1001.53252.94903.77703.8609
2001.53252.94803.77703.8581
3001.53252.94803.77703.8581
4001.53252.94803.77703.8575
5001.52162.94803.77503.8560
6001.52162.94803.77303.8560
7001.51942.94803.77303.8555
8001.51942.94803.77303.8555
9001.51912.94803.77303.8555
10001.51862.94803.77303.8555
Average1.52502.94813.77483.8569